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Chapter 24
The Emergence of Quantum Geometry
Dean Rickles

A central theme of the previous selection of papers was the existence of a variety of di-
vergences, especially the problems generated by the self-energy of elementary particles.1
A common thread that emerges, persisting to this day, is that gravitation might be able
to get some kind of foothold in the theory of elementary particles if it could be invoked
to provide a physical (non-ad hoc) cutoff at wavelengths that do not conflict with current
observations of experimental particle physics data.2 Hence, Einstein’s old question about
the role of gravity in elementary particle physics (mentioned in the introduction to part one
of this volume) comes alive once again, though not in the way he envisaged it: gravity is
rather “put to service” in elementary particle physics as a kind of external resource. How-
ever, the notion of a gravitationally induced cutoff took some time to form, and had to
wait for a more thorough understanding of the non-linear aspects of the theory, which had
remained largely buried under the more tractable linear approximation.3 But this work can
be seen as emerging from a well-worn path involving the usage of other cutoffs (minimum
lengths) to tame the infinite behaviour of field theories—if gravity suggests a minimum
length, then previous work on such ideas can be transferred across from context to con-
text. The papers presented in this part, then, as with many others in this book, were not
initially written with quantum gravity in mind; this was a connection only made later once
the problem of quantum gravity itself had undergone several changes—not least the idea
that quantum gravity involves quantum spacetime.

There were many early suggestions that gravity might act as some kind of divergence
“regulator”. The divergences in question were those of QED, and meson theories, which
were still, pre-WWII, a somewhat mathematically murky territory (quantum field theory
still is, of course). The problem concerned the transitions between quantum states, during
which time (a very short time, determined by the uncertainty relations) energy conserva-
tion is violated. The great hope for introducing gravitation into elementary particle physics
was that it would terminate the wavelengths before they have a chance to reach the prob-
lematic high-energy (ultraviolet) wavelengths. Landau (1955) appears to be the first to
have suggested this idea based on his more general desire to achieve something beyond
quantum field theory, since Landau had a deep distrust of quantum field theory. More
specifically, Landau’s field theoretic investigations revealed that even given renormaliza-
tion, the short-distance behaviour continued to generate infinities (“Landau ghosts”) on
account of the approach to the infinite bare masses and couplings (past the “screening”

1A good philosophical treatment of the reactions to these divergences is Rueger (1992).
2The alternative, to be found in superstring theory, is to postulate a finite size for the elementary entities (in
the earlier period, this would have been, e.g., the electron radius).
3What the non-linear analysis eventually revealed was that gravity’s divergences were more complex than
those of electrodynamics, since they involved a shifting of the light cone so that light cone singularities
would be “smoothed out” by fluctuations in a quantum theory of gravity (a nice result of the quantum
geometry inherent in quantization of the metric): Klein 1956; Landau 1955;Deser 1957. We return to this
briefly below.
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effect that Landau had himself discovered).4 Pauli also makes several comments to this
effect,5 including the following remarks in a letter addressed to Abrikosov, Khalatnikov,
and Pomeranchuk (in which he assigns priority of the idea to Landau):

I was very interested in Landau’s remarks on the possibility of a connection of
the cut-off moment of quantum electrodynamics with gravitational interac-
tion (his article “on quantum theory of fields” in the Bohr-festival volume). It
appeals [sic] to me, that the situation regarding divergencies would be funda-
mentally changed, as soon as the light-cone itself is not any longer a 𝑐-number
equation. Then every given direction in space-time would have some “prob-
ability to be on the light-cone”, which would be different from zero for a
small but finite domain of directions. I doubt, however, that the conventional
quantization of the 𝑔𝜇𝜈-field is consistent under this circumstances. (Zürich,
15 August 1955; in Meyenn (2001, 329))

Given his obvious expertise in both general relativity and quantum field theory, one won-
ders why he didn’t do more work in the area of quantum gravity. Though as he suggests,
it is clear that novel (i.e. unconventional) approaches are probably required (a far cry from
his optimistic remarks in the 1929 paper with Heisenberg in which he claims that the
general relativistic case would be much the same as electromagnetism). He was, nonethe-
less, certainly preoccupied with general relativity towards the end of his life—perhaps
this “later-life” preoccupation with the unification of quantum and gravity (also shared by
Eddington and Schrödinger) contributed in some small way to the poor reputation of the
field at this stage.

Developing his earlier remarks to Abrikosov et al. (in the discussion after Klein’s
talk), Pauli mentions Landau’s argument that for large cutoff momentum 𝑃 , the gravi-
tational coupling between a pair of electrons is of the same magnitude as the Coulomb
forces. He notes that Landau’s relation 𝐺𝑃 2 ∼ 1 is the same as Klein’s 𝑃 ∼ ℏ/𝑙0 (where
𝑙0 = √𝐺ℏ𝑐). He writes:

[T]he connection […] of the mathematical limitation of quantum electrody-
namics with gravitation, pointed out by LANDAU and KLEIN, seems to me
to hint at the indeterminacy in space-time of the light-cone, which is gov-
erned by probability laws in a quantized field theory, invariant with respect
to the wider group of general relativity. It is possible that this new situation
so different from quantized theories, invariant with respect to the LORENTZ
group only, may help to overcome the divergence difficulties which are so
intimately connected with a 𝑐-number equation for the light-cone in the latter
theories (Pauli’s comments after Klein’s talk, in Mercier and Kervaire 1956,
69).

Pauli’s thoughts were borne out in one way (the light cone structure is affected as he sus-
pects); however, it leaves a challenge behind in dealing with new divergences. As Bryce
DeWitt pointed out, in Louis Witten’s important collection, Gravitation: An Introduction
to Current Research, from 1962 (less than seven years after Pauli’s remarks),
4Later work would reveal that such Landau ghosts could be dealt with in the context of renormalization
group theory, but at the time it appeared as though quantum field theory was suffering from an incurable
illness—for more on this, see Brown (1993, 21).
5See also Pauli’s letter to Källén (dated 24th April, 1955: pp. 207–208); Peierls’ letter to Pauli (dated 9th
May, 1955: pp. 228–229); Pauli’s letter to van Hove (dated 11th May, 1955: 230–231); Heisenberg’s letter
to Pauli (dated 11th, May 1955: pp. 234–235).
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[I]t must constantly be borne in mind that the “bad” divergences of quantum
gravidynamics are of an essentially different kind from those of other field
theories. They are direct consequences of the fact that the light cone itself gets
shifted by the non-linearities of the theory. But the light-cone shift is precisely
what gives the theory its unique interest, and a special effort should bemade to
separate the divergences which it generates from other diverg’ences. (DeWitt
1962, 374).

In the United States, the first PhD thesis to be written on quantum gravity was that of Bryce
DeWitt, under the supervision of Julian Schwinger (at Harvard University, completed in
1949). DeWitt sought to revisit Rosenfeld’s work on the computation of gravitational self-
energies (cf. Deser 1957). DeWitt would also revisit this idea of Landau’s that gravity
might act as a natural regulator (DeWitt 1964). Though Landau didn’t explicitly mention
the Planck scale (he placed the location of the cutoff much higher), Pauli clearly appeared
to think that Landau had quantum gravitational effects in mind (or that he ought to have).
It is clear that if there is a “fundamental length,” below which ordinary quantum field
theoretic processes cannot operate, then one has what Landau sought. DeWitt was able to
confirm that (at lowest order of perturbation) when gravity is included, the self-energies of
charged particles (and the gravitons themselves) remain finite (though often very large).
Here again, as in earlier parts, we see a link between minimum length scales and the notion
of limits and domains of applicability of theory and concepts. The question of whether
there is a physical cutoff naturally has theoretical links with programmes concerning the
existence of a fundamental length, and discrete space(time) in general.6

More indirect, however, was Peter Bergmann’s method of utilising the fact that the
gravitational field equations determined particle trajectories free of any notions of diver-
gences. He believed this would follow from the analysis of Einstein, Hoffmann and Infeld,
according to which the assumption of geodesy for a free particle’s motion was redundant,
since it already could be seen to follow (by a method of successive approximation) from
the field equations alone.7

Developing the cutoff idea, and the idea that there might be a minimal (fundamental)
length, leads one quite naturally into the idea that space and time might not be continuous,
6As DeWitt puts it: “The dimension 10−32𝑐𝑚 constitutes a fundamental limit on the smallness of allowable
measurement domains. Below this limit it is impossible to interpret the results of measurement in terms of
properties or states characterising individual systems under observation” (DeWitt 1962, 373).
7I might also note here that ultimately string theory emerged from the divergences problems facing quantum
field theories of fields other than the electromagnetic field (particularly the strong interaction). In particular,
since the perturbative approach breaks down when the coupling constant determining the strength of an
interaction is large (as in strong interaction physics), alternative approaches were sought in the late 1950s
and throughout the 1960s. One of the more popular of these approaches combined Heisenberg’s S-matrix
theory with dispersion theory. The S-matrix is a tool to encode all possible collision processes. Heisenberg
suggested that one take this to embody what was relevant about the physics of collision processes. In
particular, all that was observable were the inputs and outputs of collision processes, observed when the
particles are far enough apart in spacetime to be non-interacting, or free. This black box approach to physics
was very much inspired by the Copenhagen philosophy. The dispersion relation approach to physics tried
to construct physical theories on the basis of a few central physical axioms, such as unitarity (conservation
of probabilities), Lorentz invariance, and causality (effects can’t precede causes). These two approaches
were combined, by Geoff Chew amongst others, so that the focus was on the analytic properties of the S-
matrix. One model for the S-matrix, incorporating some other principles thought to be involved in strong
interaction physics, was the Veneziano model. This used the Euler beta function to encode the various
desirable properties of the S-matrix. The model was found to be generated by a dynamical theory of strings.
(See Cushing (1990) for a detailed historico-philosophical account of the early development of string theory,
or Rickles (2014) for a more recent account.)
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but better modelled instead by a discrete lattice or similar structure. In the early days
the cutoff was implemented in the kinematical structure, rather than having it emerge
dynamically—whether the cutoff (discreteness) is fundamental or not is a different issue.
This was suggested by several people. In a paper from 1930 Ambarzumian and Iwanenko
(Chapter 25) argued for the introduction of a spatial lattice structure for physical space
as a way of eliminating the infinite divergences from the self-energy of the electron. The
basic idea was that the existence of a minimal length would imply a maximal frequency
(p. 416). Alfred Schild (Chapter 30) investigated the properties of such a discrete lattice in
order to see if it would break essential symmetries. In particular, he was responding to the
objection that discrete theories would violate Lorentz invariance, which could manifest
experimentally resulting in inconsistencies with known results.8 He wasn’t able to devise
a model to preserve all such symmetries, but enough to provide a plausible candidate for a
background for a physical theory. Here again we find constraints operating on the various
approaches to provide some sort of mechanism for the rejection and selection of theories
or approaches—in this case the Lorentz symmetry of the classical theory.

Another discrete approach, of David van Dantzig (1938; 1956), was motivated by a
combination of general covariance (as expressed in Einstein’s “point-coincidence” argu-
ment) and the definition of observability in such a theory. He argued that in a generally
covariant theory the observable things will be coincidences: events (not shuffled by diffeo-
morphisms). Van Dantzig argues that in order to not introduce unmeasurable structure into
the interpretation or formulation of one’s theory, one should dispense with the existence of
a four-dimensional continuum, in favour of a discrete manifold of events. Peter Bergmann
describes one such approach as one of “constructing “spaces” that have certain topologi-
cal properties similar to those of point spaces in the large but do not possess “points” as
elementary constituents” (Bergmann, following a talk of Wigner’s: Wigner (1956, 226)).
The general approach lives on in several of the current approaches, including causal set

8This same objection to discrete models surfaces again in present-day discussions of discrete space in quan-
tum gravity (a fairly generic prediction of several approaches), especially in the context of loop quantum
gravity which directly predicts (at least at the kinematic level) geometrical operators with a discrete spec-
trum. Given that there is supposed to be a fundamental length (namely the Planck length, and corresponding
fundamental times and masses) in these approaches, it makes sense to ask if observers in relative motion will
agree on this length: why no Lorentz-FitzGerald contraction for boosted observers, rendering the notion of
a minimum length incoherent? Why is a length measurement for the minimum length case not subject to the
usual frame dependence? According to Carlo Rovelli (one of the primary architects of loop quantum grav-
ity that itself appears to face the problem) and Simone Speziale, quantum mechanics is the key to avoiding
this “discreteness/invariance” conflict: “the minimal length (more precisely, minimal area) does not appear
as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable
[so that the] boosted observer can see the same observable spectrum, with the same minimal area. What
changes continuously in the boost transformation is not the value of the minimal length: it is the probability
distribution of seeing one or the other of the discrete eigenvalues of the area” (Rovelli and Speziale 2003,
064019). They elaborate as follows, linking directly with issues of quantum spacetime: “The geometry of
space comes from a quantum field, the quantum gravitational field. Therefore the observable properties of
the geometry, such as, in particular, a length, or an area, are observable properties of a quantum physical
system. A measurement of a length is therefore a measurement in the quantum mechanical sense. Generi-
cally, quantum theory does not predict an observable value: it predicts a probability distribution of possible
observable values. Given a surface moving in spacetime, the two measurements of its area performed by
two observers 𝑂 and 𝑂′ boosted with respect to one another are two entirely distinct quantum measure-
ments. Correspondingly, in the theory there are two distinct operators 𝐴 and 𝐴′, associated to these two
measurements. Now, our main point is the technical observation that 𝐴 and 𝐴′ do not commute:

[𝐴, 𝐴′] = 0. This is because 𝐴 and 𝐴′ depend on the gravitational field on two distinct 2d surfaces in
spacetime […] and a field operator does not commute with itself at different times”. Hagar (2014, §8.4.4)
contains a useful, detailed discussion of this problem.
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theory and dynamical triangulations—though the conceptual basis (especially observabil-
ity through invariance is absent from the latter case). Bergmann’s comments also draw
attention to the “emergence” of continuous spacetime from a discrete structure (a problem
at the root of causal set theory, though one in which progress has been made: see, e.g.,
Major, Rideout, and Surya (2007)).

There was nothing corresponding to paradigms in the early work. Nobody pursued
a single programme for long enough—though Bergmann’s initial canonical quantization
approach spawned a genuine research programme (along with a family of characteristic
questions, having to do with “true observables” and the like) that has persisted. How-
ever, in the present day we do have a situation of what seem to be competing, coexisting
paradigms (with elements of this sourcebook’s papers as ingredients). We can find the
seeds of this landscape in the emergence of various “schools of research”, each tackling
the problem of quantum gravity in a unique way. Often these schools themselves had
seeds in the distinct tools that the researchers brought from their training, as physicists
and mathematicians (recall that before the 1960s, it was rare to find general relativity
taught outside of mathematics departments).

The idea at the focus of the papers in this part, that a discretization of space might
go some way towards resolving the problems of short-distance physics, is of course rather
natural and almost obvious. However, the initial developments were not linked to gravita-
tional physics, although many of the results originally couched in non-gravitational work
were carried over into that area. It was eventually realised, for example, that gravitation
itself might be able to provide a physical foundation for discrete space and that given
the dual nature of the metric field, quantum gravity should lead one to expect a discrete
spacetime. Given this, the various results pursued independently of the quantum gravity
problem (violation of Lorentz invariance and so on), become directly relevant.

There are three motivations underlying the notion of discrete space(time) in the early
work:9

1. An ad hoc discretization using a lattice structure—often used as an approximation,
for which the continuum limit would be taken later on.

2. An operational discretization using fundamental measurement limitations imposed
by the uncertainty relations.

3. A discretization using a physical cutoff imposed (e.g. by gravity).

The first steps towards a field theory over a discrete space—along the first motivation (in
the context of field theory)—were taken by Ambarzumian and Iwanenko in 1930. This
paper also includes a discussion of whether time would need to be quantized, along with
space, as a corollary. The argument is simple: a minimum length implies a maximum
frequency which implies a minimum time interval Δ𝑡 = 1

𝑐 Δ𝑥.10 They are concerned
solely with the infinite self-energies that arise from the point-like nature of electrons. As

9As Rueger makes clear (Rueger 1992, 317), prior to the 1930s there was a sense that the infinities were
simply a hangover from the classical theory that if cured first (classically) would not reassert themselves
at the quantum level. This was not the case, and it became clear that there existed specifically quantum
divergences.
10In another paper from the following year, Iwanenko reiterates that the value 𝜆 ∼ ℎ

𝑚𝑐 also determines a
“chronon”: “Dieser Wert hat schon als kleinste definierbare Entfernung zu gelten und nicht der Elektro-
nenradins. Mit der kleinsten Entfernung hängt die kleinste Zeitspanne zusammen” (Ivanenko 1931, 623).
As Kragh and Carazza note, there were earlier speculations, with similar results, about time atoms from
Pokrowski and Fürth (Kragh and Carazza 1994, 457–458). Indeed, they show that the 20s and 30s were
positively teeming with discrete space, time, and spacetime proposals. However, many of them are de-
tached from the central problems of field theories that concern us here.
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they note, there seem to be two broad ways out of the predicament: give the electrons a
finite size, or else restrict the spatial resolution to which one can probe (placing a limit on
the validity of the theory—motivation two above). Since the former was thought to be not
possible in quantummechanics, they opt for the latter strategy. They resolve this “problem
of space” by introducing a cubic lattice with grid points separated by some constant factor,
𝑎, to be determined (such that ordinary quantum theory is recovered as 𝑎 → 0). Differential
equations are then replaced by discrete, difference equations.

This was followed by Heisenberg,11 Ruark, March and several others, including, in
England, Henry Flint. Flint was an interesting case, since he had his eye on the problem
of unification of relativity and quantum mechanics in his work on fundamental length (via
“ultimate measurements”—again, corresponding to the second motivation).12 The Am-
barzumian and Iwanenko paper was also directly cited by Schild, in his paper on discrete
spacetime (included in this volume).

There were some other interesting attempts for “quantizing space” in the 30s. The
most interesting is perhaps John Von Neumann’s (unpublished) proposal from 1937.13
Von Neumann distinguishes two kinds of singularity: the point-particle singularity and the
infinite degree of freedom singularity (resulting from the infinite number of parameters
needed to describe a field). In a letter to Rudolf Ortvay from 1938 he describes his model
for discrete spacetime as follows:

(1) The 𝑥, 𝑦, 𝑧 coordinates and the 𝑡 are non-commuting operators.
(2) The order of magnitude of commutators is ℎ

𝑚𝑐 . (That is to say, this is
the uncertainty associated with a simultaneous measurement of coordi-
nates.)

(3) The whole structure has the Lorentz-symmetry.
(4) Each of the 𝑥, 𝑦, 𝑧 coordinates has a discrete spectrum: ±1/2, ±3/2, …
(5) The spectrum of the time 𝑡 is continuous, from −∞ to +∞.
(6) When 4. and 5. are combined with 3. this comes out:

Given four real numbers 𝛼, 𝛽, 𝛾 , 𝛿, the spectrum of the operator 𝛼𝑥 +
𝛽𝑦 + 𝛾𝑧 + 𝛿𝑡 is as follows:

(a) If 𝛼2 + 𝛽2 + 𝛾2 − 𝛿2 > 0 then it is discrete: ±𝜖/2, ±3𝜖/2, … ,
where 𝜖 = √𝛼2 + 𝛽2 + 𝛾2 − 𝛿2.

(b) If 𝛼2 +𝛽2 +𝛾2 −𝛿2 < 0 (indeed even when = 0) then it is continuous
from −∞ to +∞.

So this a “discrete” crystalline space with “continuous” time, which has not
only spherical symmetry (even though it is a “crystal”!), but is even invariant

11In fact, in the acknowledgements to their paper, Ambarzumian and Iwanenko refer to analogous work of
Heisenberg that they had only just became aware of at the time of publication.
12In his notebook (from 1950) there is a section on “The Theory of Relativity and the Quantum Theory”
in which he nails down his project: “The underlying theme of this work is the union which exists between
the theory of relativity and the quantum theory and the purpose is to portray it by means of geometry and a
theory of measurement” (Henry Flint Papers, University of London, Document B53: p. 1).
13The manuscript is entitled “Quantum Mechanics of Infinite Systems” see Rédei (2005, 21–22).
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with respect to changes of the reference system given by Lorentz transforma-
tions, and so shows the proper Lorentz-FitzGerald contraction phenomena.
(This is made possible, of course, by the non-commuting nature of the co-
ordinates.) (von Neumann, letter to Rudolf Ortvay: March 17, 1938 [Rédei
2005, 22])

In a letter to Dirac (dated January 27, 1934) he writes:

It should be perhaps desirable, to have operators 𝑋, 𝑌 , 𝑍 which gave discrete
(point) spectra, in order to avoid the difficulties connected with the point elec-
tron (in electrodynamics). (Rédei 2005, 21)

Dirac replied the following month (February 28, 1934) pointing out that the model was
not invariant under displacement of the origin of the reference frame defined by the 𝑋, 𝑌 ,
𝑍.

Quantization here is viewed, then, as a cutoff to prevent the ability to resolve to
point-like distances. The problem with such accounts is that they are physically ad hoc
(motivation one from above). Von Neumann did not pursue the idea further for this reason:
“because [he] considered it very artificial and arbitrary” (Rédei 2005, 22).

Heisenberg was inspired primarily by the second motivation, though it mixed with
the first, in order to tame the infinite self-energy of electrons.14 His first thoughts about
discretisation can be found in a long letter to Bohr from March 1930 (translated into En-
glish in Carazza and Kragh (1995), along with a reconstruction of the logic of the argu-
ment it contains)—one wonders whether he was aware of Ambarzumian’s and Iwanenko’s
work, which is remarkably similar (as mentioned, Ambarzumian and Iwanenko note, at the
proofs stage of their paper, that they were aware of Heisenberg’s attempt, though it is hard
to discern whether their work was initially written without knowledge of this). The idea
is also to divide space up into a cubic lattice, where the cells have volume 𝑟3

0 = (ℎ/𝑀𝑐)3.
The length 3√𝑟0 (the electron radius) was then the “elementary length”. He called the
world described by this theory “gitterwelt” (“lattice world”). The self-energy of an elec-
tron would be rendered finite in the gitterwelt—a point Heisenberg returned to in his paper
“Die Selbstenergie des Elektrons” (submitted in August of that year). As Heisenberg also
notes, in the given scheme differential equations would have to be replaced with differ-
ence equations.15 A central problem, as Heisenberg saw it (and as would deter others
from the discrete space idea) was that relativistic invariance was spoiled by any scheme
that introduced a fundamental length—this assumption was progressively taken apart in
papers from the late 1930s onwards. (Heisenberg also pointed to difficulties in making the
space isotropic; as well as with energy, momentum, and charge conservation: for these
reasons he asked Bohr whether he thought the idea “completely mad”!) But beyond this
breakdown of Lorentz invariance, the other target of Heisenberg’s 1930 paper was to show
that there are wider problems with field theory that go beyond the problem of infinite self-
energy—this became part of a general programme of getting clearer on the distinct kinds
14Interestingly, Heisenberg had already briefly considered the idea of letting spatial coordinates be non-
commuting in 1930 in order to generate a minimum length from uncertainty relations. He put this idea to
Rudolf Peierls asking for any suggestions, including any input from Pauli. Julius Wess (2001, 1) claims that
Heisenberg relayed it to Peierls (his student), who relayed the idea to Pauli who relayed it to Oppenheimer
(his student), who relayed it to Hartland Snyder (his student: see below)! This occurs over a period of 15–16
years.
15Carazza and Kragh (1995) argue that Heisenberg did not really endorse a discrete space at this stage, but
rather used discreteness only at the level of derivatives with respect to spatial coordinates (which are indeed
replaced by discrete, finite differences).
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of divergences in physical theories (on which, see the introduction to the previous part of
this volume).

In his 1938 paper (Chapter 26: “Über die in der Theorie der Elementarteilchen auftre-
tende universelle Länge”), Heisenberg explicitly ignores gravitational interactions “which
hardly play a role in nuclear physics,” focusing on ℏ and 𝑐 alone. This is part of a general
to and fro with respect to the role of gravitation in elementary particle physics. However,
when discussing the “universal length” he does briefly return to the issue, though again to
dismiss gravity’s role in the fundamental length. As is standard, he considers the electro-
magnetic analogy, comparing the gravitational interaction of photons with the electrical
interaction of electrons. But he notes a crucial dis-analogy: introducing the gravitational
constant (Heisenberg uses 𝛾 rather than 𝐺) together with ℏ and 𝑐 can be combined to gen-
erate the (Planck) length: 𝑙 = √ℏ𝛾/𝑐3 (which Heisenberg computes to be 4 × 10−33cm).
However, given the vast distances separating these domains, Heisenberg points out that
the problems ass’ociated with his 𝑟0 (the electron radius) ought to be resolved first, as
the most urgent task. In other words, there is a practical argument here for the neglect of
issues having to do with quantum gravity.

The reason for this urgency were the difficulties faced by Fermi’s theory of 𝛽 decay,
based on Pauli’s neutrino hypothesis, which was found to suffer from divergences of an ex-
treme (i.e. unrenormalizable in modern parlance) kind—involving the divergence of (Born
approximation) cross sections as the energy of the incident particles went to infinity—so
that the perturbation technique for treating interactions didn’t give sensible answers.16 Of
course, we know that this problem was pointing to a limit with the then current quantum
field theory. But Heisenberg, viewing Fermi’s theory as a fundamental (and unified, in
terms of weak and strong forces, with a single coupling constant) theory, took it to point to
another source in which one could only resolve distances to certain distances, again close
to his 𝑟0.17 In this case Heisenberg drew attention to the particle multiplicity (“explosio-
nen”) in cosmic ray showers in which many particles are created: the particle production
would limit the resolution (so that 𝑟0 represents a fundamental limit in this sense: physics
becomes “turbulent” at shorter lengths as the coupling blows up). Of course, there was a
limit, but the limit was theoretical rather than practical: therewas a layer of particle physics
below that captured by Fermi’s theory. The short-distance, strong interaction physics that
followed this was a major impetus to quantum gravity physics since gravitational and
strong interactions had similar non-linearities (due to the self-interacting nature of the
forces)—though, of course, gravity is universal (couples to all sources of energy equally).
Hence, a new analogy between these forces, and to a lesser extent with electrodynamics,
took hold.18

16The is the famous four-fermion coupling 𝐺𝐹 which was not properly understood until the electroweak the-
ory was developed, and the machinery of gauge theory was applied, along with Yukawa’s idea of mediation
by a new kind of boson (the “U-quantum” or mesotron) which replaced the four-fermion term. The evidence
for mesons came in 1937, when they were isolated in cosmic rays. It should perhaps also be said that the
realisation that all would not be plain sailing with respect to the other forces of nature shifted the focus onto
the peculiarities of gravitation. See Chapters 3 and 4 of Brown and Rechenberg (1996) for a historical study
of the Fermi-field theory.
17Now the length involves themesotronmass𝜇, ℏ/𝜇𝑐, derived fromYukawa’s theory. Note that Heisenberg’s
persistent belief in a fundamental, universal length can be seen as more reasonable given that there is a
remarkable coincidence between the electron radius and this meson mass (and so the range of the nuclear
forces).
18As Brown and Rechenberg make clear, the existence of cosmic ray phenomena was pivotal precisely in
that it served to delineate the borders of the known physical theories, pointing out exactly when they would
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We have seen that Bronstein had already written on related issues in 1936, pointing
out that there exist quantum measurement restrictions beyond the commutation relations
in the case of gravitational measurements, since there cannot be bodies of arbitrarily large
mass density (cf. Gorelik and Frenkel 1994, 106). Bronstein thought this called for a
revision of spacetime concepts (as did Heisenberg, though for different reasons). Unfor-
tunately, his untimely death means that we don’t know how or if he intended to pursue
this revision.

The third motivation was discussed, mostly informally, in our pre-1950 period, by
Pauli and Landau amongst others, but the idea was not fully developed in published form
beyond mere suggestions.

Hartland Snyder’s is probably the best known early work on discrete spacetime—the
paper is truly a citation classic, with 1714 citations at the time of writing.19 In this case the
resulting spacetime is explicitly presented as quantized, with the spacetime coordinates
themselves represented by Hermitian operators with discrete spectra. We have already
seen this basic idea, of course, with Heisenberg and von Neumann. The innovation is
to properly formalise the idea and establish that the discrete space idea need not violate
Lorentz invariance.

Snyder (1947) returned to the subject the following year, with a paper applying the
quantized spacetime concept to the electromagnetic field. There is then a trail leading
from Snyder to Schild, in which the mathematical properties of quantized spacetime are
uncovered.20

C. N. Yang (Chapter 28) tackled a serious issue with Snyder’s model, namely that it
violates translation invariance whenever the coordinates are not a continuum. However,
a continuum clashes with the fundamental (i.e. non-epistemic) minimum length of the
model.21 Yang resolves the translation issue, but a problem of scale persists, namely in
the form of a curvature of the universe at odds with what we observe (curvatures are of
the order of the Planck scale rather than the Hubble radius).

break down, see Brown and Rechenberg (1996, 72). Heisenberg was, of course, wrong in thinking that
Fermi’s theory was fundamental: there was new physics that Heisenberg was not then privy to.
19Of course, this is the same Snyder who had worked with Robert Oppenheimer, in 1939, on the fate of
very massive collapsing stars (approximated by an homogeneous, zero pressure ball of dust), showing that
a one-way membrane (an “event horizon” in modern parlance) would emerge from the process and that a
final singularity would also result—Landau had earlier noted the existence of a critical mass in 1932, and
Chandrasekhar had shown in 1931 that the electron degeneracy pressure could not withstand further collapse
for stars greater than 1.3 solar masses. It is rather odd that Snyder never made any link between these two
streams of his work—continued collapse to a singularity and discrete space—since the former involves the
reduction of a system’s dimensions to values small enough (perhaps indefinitely small) to be relevant for the
latter. (Oppenheimer and Snyder even write, “Physically such a singularity would mean that the expression
used for the energy-momentum tensor does not take account of some essential physical fact which would
really smooth the singularity out”, Oppenheimer and Snyder (1939, 456). Later, John Wheeler would bring
the two together via the Planck length: two areas where the “dynamics of geometry” fails to lend itself
to classical analysis (Wheeler 1968, 253–254). This work would lead, ultimately, to Wheeler’s notion of
“spacetime foam.”
20Bergmann and Brunings briefly refer to Snyder, if only to distance their quantised metric variables from
his: their coordinates, as they say, “commute with each other, but not with the energy-momentum densities”.
They continue: “The dynamical character of any particle coordinates follows automatically, but probably
does not exhaust the physical significance of the coordinate commutation relations” (see Chapter 33). This
highlights the continuity, at least, between Snyder’s (and the other related) work on quantized/discrete spaces
and quantum gravity research.
21We saw above, in footnote 8, how Rovelli and Speziale manage to sidestep the problem by introducing
probabilities for measurement outcomes.
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It is rather interesting that Alfred Schild published his work on discrete spacetime
around the same time that he transitioned into research on the canonical quantization of
general relativity, following Dirac’s influential 1949 lectures at the International Math-
ematical Congress in Canada, which Schild attended with his Masters student Felix Pi-
rani.22 Yet there is no mention of gravity in his paper on discrete spacetime, despite the
fact that together with Pirani, Schild explicitly quantised the spacetimemetric. This clearly
reveals (perhaps rather surprisingly) that the project of “quantization of gravity” had not
yet been linked to what we now call “quantum spacetime.” The focus is instead on the
construction of a discrete model of spacetime that is as close as possible to Lorentz in-
variant, and the context is the problematic divergences of standard quantum field theory.
Schild’s basic object is a hypercubic lattice, with time coordinate included amongst the
spatial coordinates. He deals with (𝑐 = 1) Lorentz transformations that map a 3-lattice
onto itself (where the 3-lattice takes on integer coordinates).

While Snyder’s approach was indeed Lorentz invariant, it made use of the rather awk-
ward idea that spacetime coordinates were non-commuting operators (so that spacetime
functions become Hilbert space operators) and was not translation-invariant. Schild uses
coordinates that are integer multiples of a fundamental length (rather than having eigenval-
ues that are integer multiples as with Synder), and so more along the lines of the proposals
of Ambarzumian and Iwanenko et al.. Schild’s goal is likewise to show that a common
objection against discrete approaches to eliminating the divergences—that they violate
Lorentz invariance due to the frame dependence of the “minimum” cell size—is only par-
tially correct since one can construct models that are invariant under a large subgroup (the
discrete subgroup) of the Lorentz group. These, he suggests are in fact physically viable
(unlike Snyder’s and Yang’s), and cast in a model closer to ordinary spacetime, thus un-
dermining a host of common objections and making discrete models in principle a genuine
possibility for fundamental physical theory—though, as he admits, his own model suffers
from physical inconsistencies to do with a radically oversized minimal velocity.23

Nathan Rosen (Chapter 29) introduces statistical considerations into the treatment of
a discrete space: his elementary volumes are related to positionmeasurement uncertainties
(that is, to practical limitations: no infinitesimal measurement rods, therefore no physical
point-like measurements). More specifically, the measurement of spatial coordinates of
elementary particles (electrons) introduces inaccuracy into the measurement results such
that repeated measurements will generate values sitting around the mean of a Gaussian
distribution. His aim is, as with other proposals we’ve considered, to eliminate singulari-
ties (relating to the second motivation again). The resulting picture is not so very different
from the Synderian one of a non-commutative space. However, the discreteness here is
epistemological, coming from the difficulties involved in pinning down a spacetime point.

There is a very (later) Eddingtonian quality to this, especially the splitting of the ab-
stract space from the observable space, which corresponds to Eddington’s geometrical and

22Indeed, Schild’s paper appears in the very same journal as Dirac’s paper, in the issue directly preceding
that containing the paper that would inspire Schild’s work on the quantisation of the gravitational field.
23This shortcoming was partially eliminated by E. L. Hill in 1955 by restricting the values of spacetime
variables to rational numbers—partially, because the resulting space does not quite live up to the “discrete”
moniker. As Hill notes in a footnote in this paper, his Master’s student, C. N. Kelber was working on this
same problem of Lorentz invariance violation at the same time as Schild. There is some correspondence
between Schild and Kelber, where the latter explains that he has a model that involves non-homogeneous
Lorentz transformations so that the origin is not fixed for all observers (Kelber, letter to Schild, June 21st
1948).
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physical frames.24 Volumes in the observable space correspond to points in the abstract
space. Lorentz invariance is preserved in this scheme only in the abstract space; yet Rosen
suggests that a kind of translation manual could be established between transformations
in this space and real physical transformations in the observable space.

There is also an interesting parallel here to some of the issues regarding the “real-
ity of spacetime points” (e.g. in the context of the hole argument in general relativity).
Rosen argues that the value of a physical quantity at a point is not directly observable, so
that physical laws should not be based on such quantities. What is not clear is whether,
according to Rosen, the world (ontology) tracks epistemology so that our laws must be
written this way because the world is that way so that only the mean values of quantities
over volumes have any physical meaning at all.

Rosen reviewed a closely related paper by Averbah and Medvedev in 1949. He also
later returned to a similar idea, writing with Asher Peres, in 1960, though this time explic-
itly linking to measurement of the gravitational field. By this stage they viewed the exis-
tence of quantum uncertainties in these measurements (in the mean values of the Christof-
fel symbols) as pointing to the necessity of quantizing the gravitational field. Though
we don’t see any explicit discussion of the “discrete space-gravitation” connection, the
works presented here nonetheless contain crucial evolutionary steps. The recognition that
playing around with the structure of space(time) might offer up cures for some of the dif-
ficulties of quantum field theory was an early one; linking this up with the way in which
general relativity includes the geometrical structure of spacetime as one of the dynamical
variables took somewhat longer.
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