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  Introduzione

  1. Una vita vissuta a pieno

          [Nicolò di Cusa] fu acutissimo disputante ne la filosofia
          aristotelica, […]non fu genere alcuno di scienza nel quale egli non
          fosse maraviglioso (come afferma Sisto Senese ne la sua Biblioteca[1]) e sopra il credere di tutti eruditissimo. Di bontà di
          costumi, dice Schedelio, fu mentre visse, tale che pochi in quei
          tempi furono migliori di lui; fu acerbissimo nemico dei vitij,
          aversario de le ambitioni, d’integrità d’animo imutabile,
          patientissimo fino all’estrema vecchiezza di tutte l’honeste
          fatiche, benefico e grato a meraviglia, eloquente poi di maniera e
          copioso, che postosi a l’improvviso a discorrere di qual si voglia
          cosa, pareva che a quella solamente e non ad altra egli havesse
          atteso[2].

          
Bastano queste poche righe di Bernardino Baldi (1533–1617) per
          farsi un’idea dello spessore intellettuale e umano di Cusano. Ora,
          che Cusano sia un personaggio chiave della cultura occidentale è
          cosa nota: molti e importanti sono i contributi che egli dà in
          ambito filosofico, giuridico, religioso e politico. Gli studi
          critici hanno evidenziato e continuano a evidenziare i diversi
          aspetti e le implicazioni della sua vastissima e poliedrica attività
          speculativa, che impressiona per l’ampio respiro di cui è
          capace[3]. Meno noti, ma altrettanto significativi, sono l’impegno e
          la perspicacia con i quali il cardinale cerca di risolvere questioni
          strettamente matematiche alle quali si dedica costantemente e
          intensamente per oltre quindici anni.

          Certamente l’interesse di Cusano per la matematica percorre tutto
          il suo iter speculativo: sfogliando, anche solo rapidamente, il De docta ignorantia, è evidente la forte impronta
          matematizzante del suo pensiero. In questo, come nei testi
          successivi, Cusano utilizza nozioni, figure, definizioni
          geometrico–matematiche in chiave simbolica, al fine di cogliere le
          verità che trascendono il piano razionale.

          Tuttavia, vi sono molti scritti incentrati su un problema di
          carattere strettamente matematico, quello della quadratura del
          cerchio, che Cusano cerca di risolvere con interessanti
          argomentazioni e procedure logico–matematiche e che, dunque,
          costituiscono un tassello importante, ma alquanto trascurato, della
          storia della matematica moderna.

          Senza addentrarci sul dibattito, sempre attuale, sulla modernità
          di Cusano[4], un aspetto sicuramente interessante – e raro – di questo
          singolare pensatore è lo stretto connubio tra vita e pensiero: la
          riflessione filosofica di Cusano, infatti, è profondamente radicata
          nelle vicende storiche e politiche del suo tempo, delle quali egli
          non è mai mero spettatore, bensì attore, spesso protagonista[5]. Di conseguenza le sue opere non sono concepite e
          realizzate nello spazio chiuso e silenzioso di un’università o di
          una biblioteca, ma in mezzo ai conflitti politici, sociali ed
          ecclesiali della sua epoca. In più scritti egli si lamenta di avere
          poco tempo da dedicare alla matematica perché coinvolto (e spesso
          stravolto) nelle vicissitudini della Chiesa.

          Per questo, prima di passare ad analizzare la filosofia della
          matematica e gli scritti matematici, è opportuno delineare il
          profilo biografico di Cusano, dando rilievo a quegli episodi e a
          quelle circostanze storiche che hanno avuto particolare rilievo per
          la formazione e lo sviluppo delle teorie filosofico–matematiche. Non
          ci soffermeremo invece, se non fugacemente, sugli eventi storici
          aventi un risvolto più strettamente religioso e teologico: di questi
          vi è un’ampia letteratura che approfondisce questioni ancora aperte
          e che sarebbe fuori luogo affrontare in questa sede[6].

          Niccolò Cusano nasce a Kues, nella diocesi di Trier, nel 1401, da
          una ricca famiglia di battellieri, mercanti e armatori. Il primo
          dato certo su Cusano è la sua frequenza della Facoltà delle Arti
          dell’Università di Heidelberg nel 1416, ma nulla sappiamo se e come
          abbia completato gli studi e se sia stato in qualche modo
          influenzato dall’indirizzo allora prevalente ad Heidelberg, ossia
          l’orientamento nominalistico della “via moderna”. Nella sua
          autobiografia[7] Cusano non fa alcun cenno a questo periodo.

          Una tappa decisiva per sua formazione, che egli stesso ricorda, è
          lo studio di diritto sotto la guida di Prosdocimo Conti (1370–1438), che Cusano elogia come «doctor egregius»,
          «dominus meus et pater singularis», e del cui insegnamento resta
          traccia nelle sue annotazioni alla Lectura in
          librum II Decretalium[8]. Cusano inizia lo studio di diritto nel 1417, presso
          l’università di Padova, dove si laurea nel 1423, con il titolo
          accademico di Doctor Decretorum. Questi sono
          anni fondamentali per Cusano perché a Padova non solo la facoltà
          giuridica gode di grande fama – qui, tra l’altro, viene a conoscenza
          della dottrina di Bartolomeo Zabarella (morte 1445) – ma anche la facoltà delle arti vanta la
          presenza di professori di grande spessore che molto probabilmente
          Cusano ha modo di ascoltare[9]. Tra questi vi è il matematico e astronomo Prosdocimo de’
          Beldomandi (1375–1428), allievo di Biagio Pelacani (ca. 1347–1416), il quale aveva commentato attentamente
          le opere di Nicolas d’Oresme (ca. 1320–1382)[10], insigne rappresentante dei calculatores della scuola parigina, e le opere di
          Thomas Bradwardine (ca. 1290–1349)[11], il «doctor profundis», esponente di punta dei calculatores del Merton College di Oxford. Sempre
          a Padova, inoltre, gli studi medici, verso cui Cusano mostrerà
          sempre grande interesse, sono particolarmente intensi, i dibattiti
          sulle questioni scientifiche, matematiche e astronomiche sono molto
          animati ed echeggiano a livello europeo, grazie agli scambi (da
          sempre) attivi tra i maestri di Padova e quelli di Oxford e Parigi.
          E’ in questo fervido clima culturale - che fa di Padova uno dei
          centri più importanti in Europa - che il giovane Cusano inizia la
          sua formazione intellettuale[12].

          Durante il suo soggiorno padovano, Cusano stringe rapporti con
          gli umanisti Vittorino da Feltre (ca. 1378–1446) e Francesco Filelfo (1398–1481); conosce Paolo dal Pozzo Toscanelli (1397–1482), al quale sarà legato da profonda amicizia
          per tutta la vita e al quale, nel 1445, dedicherà il De geometricis transmutationibus. Qui incontra
          anche Giuliano Cesarini (1398–1444), futuro vescovo e presidente del Concilio di
          Basilea, al quale dedicherà le sue prime due grandi opere
          filosofiche, il De docta ignorantia e il De coniecturis, e il cardinale Domenico
          Capranica (1400–1458), che ricorderà Cusano e gli anni padovani
          anche quando sarà all’apice della curia romana. Dopo una presenza a
          Roma, nel 1424, dove assiste a una predica di Bernardino da Siena
          (1380–1444), Cusano torna in Germania, inizia a lavorare come legale
          ed esperto di diritto canonico presso la curia di Treviri e nel 1427
          diventa segretario di Otto von Ziegenhain (ca. 1380–1430), arcivescovo di Treviri. Nel 1425 si
          iscrive all’università di Colonia, il più grande centro
          intellettuale tra le province tedesche, e qui trascorre un periodo
          fondamentale per la formazione filosofica e teologica. Non ci sono
          pervenuti dettagli sulla sua occupazione a Colonia, ma è certo che
          qui Cusano incontra il teologo olandese Eimerico da Campo
          (Heymericus da Campo o Heymeric van de Velde, 1395–1460)[13], grazie al quale Cusano non solo recepisce l’albertinismo
          pseudodionisiano del XV secolo[14], ma conosce anche il catalano Raimondo Lullo (Ramon Llull ca. 1232–ca. 1315)[15], un pensatore che eserciterà un influsso notevole su molti
          aspetti della sua speculazione (basti pensare all’uso di simboli
          geometrici per la rappresentazione di concetti metafisici), e di cui
          Cusano copia una serie di scritti nel 1428, durante un viaggio a
          Parigi compiuto proprio insieme ad Eimerico[16]. Questi anni di stretta frequentazione con Eimerico sono
          alla base di un lungo sodalizio intellettuale, che si rafforzerà
          ulteriormente al Concilio di Basilea, a cui Eimerico prende parte
          dal dicembre 1432 al febbraio 1435 come rappresentante
          dell’Università di Colonia.

          In questo periodo Cusano intraprende anche studi sulla cultura
          islamica, su Averroè (1126–1198) e Alberto Magno (ca. 1206–1280) grazie a Ugo Benzi (1376–1439), famoso medico e grecista senese, il quale
          aveva incontrato e discusso con Biagio Pelacani. Con l’amico e umanista Niccolò Niccoli (ca. 1364–1437) ricerca nei monasteri tedeschi codici
          latini e greci, trovando anche dodici nuove commedie di Plauto (ca. 250 a.C.–184 a.C.)[17].

          Nel 1429 si reca a Roma per consegnare il codice di Plauto al cardinale Giuliano Orsini (ca. 1450–1503), il quale
          nel 1426, in qualità di legato papale in Germania, lo aveva assunto
          come segretario. Discute con Poggio Bracciolini (1380–1459) sul manoscritto del  De
          republica di Cicerone (106 a.C.–43 a.C.) e conosce il celebre bibliofilo
          Francesco Pizzolpasso (ca. 1375–1443), vescovo di Pavia e poi di Milano.

          Nel 1432 è ordinato prete sacerdote a Coblenza e a Treviri.
          Assiste in qualità di decano di San Fiorino di Coblenza al Concilio
          di Basilea, invitato dal suo protettore Ulrich de Manderschein (morte 1436), che aspira all’arcivescovado di Treviri,
          una carica ambita anche da altri candidati sostenuti da papa Martino
          V (ca. 1368–1431). Ulrich von Manderscheid era stato scomunicato dal Papa perché si era stabilito
          con la forza nell’arcivescovado di Treviri, ed esercitava, con
          l’aiuto della nobiltà e di parte del capitolo, il potere vescovile,
          malgrado lo stesso capitolo avesse nominato alla sede Jacob von
          Sierck (ca. 1398–1456), e papa Martino V, per risolvere il conflitto, avesse nominato il vescovo
          di Spira, Rabano di Helmstadt (ca. 1362–1439). Cusano cerca di difendere abilmente la
          causa appellandosi ai diritti del capitolo e al consenso dei laici,
          ma la perde. Intanto si fa conoscere come brillante canonista e come
          oppositore di Eugenio IV (1383–1447) sul problema dello scioglimento del Concilio.
          Viene eletto membro della Deputazione della Fede.

          È in questa occasione che Cusano fa amicizia con il cardinale
          Niccolò Albergati (1373–1443), Tommaso Parentucelli (ca. 1397–ca. 1455, il futuro papa Niccolò V), Enea
          Silvio Piccolomini (1405–1464, il futuro papa Pio II), nonché Ambrogio
          Traversari (1386–1439).

          Nel 1433 Cusano interviene nella lotta politica tra il Concilio
          di Basilea, presieduto da Giuliano Cesarini, e papa Eugenio IV. La maggioranza dei Padri si schiera a favore della
          superiorità del Concilio, una posizione che Cusano condivide, pur
          attenuandone gli aspetti contrastanti: è su questo tema che scrive
          il De concordantia catholica. Il suo
          prestigio e la sua autorità continuano a crescere: cerca un accordo
          di pace con gli Hussiti, che sostenevano teorie controverse sui
          sacramenti e volevano liberarsi dalla morsa di Roma, secondo la
          predicazione di Jan Hus di Boemia (1369–1415), rettore dell’Università di Praga, morto sul
          rogo durante il Concilio di Costanza nel 1415. Cusano cerca inoltre
          una soluzione alla spinosa questione della Presidenza del Consiglio
          Generale e il posto da dare ai legati pontifici. È a questo
          proposito che scrive nel 1434 il De auctoritate
          praesidendi in concilio generali, nel quale riconosce ai legati
          papali una presidenza meramente amministrativa (cioé senza poteri
          decisionali). Svolge opera di mediazione tra inglesi e spagnoli al
          Concilio e prepara i decreti sulla simonia. Nel 1436 funge da
          mediatore di pace tra il Vescovo di Würzburg e il Conte di Westheim,
          e tra Federico I di Brandeburgo (1371– 1440) e il duca di Baviera. Viene nominato conservator decretorum del Concilio. Tra il 1436
          e il 1437, convinto dell’importanza dell’azione conciliante del
          Papa, Cusano si avvicina sempre più alla Curia romana e al
          Pontefice. Contro l’antipapa Felice V (1383–1451), e sollecitato dallo stesso Traversari, sostiene Eugenio IV[18], il quale invia Cusano a Costantinopoli, chiedendogli di
          invitare l’imperatore e il patriarca di Costantinopoli a partecipare
          al grande Concilio che avrebbe dovuto svolgersi in Italia, in vista
          dell’unione delle due Chiese. È durante il viaggio nella capitale
          cristiana dell’Est che Cusano ha l’intuizione del principio della
          dotta ignoranza, che sopraggiunge – scrive Cusano al cardinal
          Giuliano alla fine del De docta ignorantia –
          per una sorta di ispirazione divina («superno dono a patre
          luminum»[19]).

          Poiché i prìncipi tedeschi avevano dichiarato la loro neutralità
          nel conflitto tra il Concilio di Basilea e il Papa, Cusano lavora
          per guadagnare la Germania alla parte papale. Si reca alla dieta di
          Norimberga sostenendo che l’infallibilità del Concilio è messa in
          dubbio dalla sua scissione, e che la minoranza papale è ormai
          maggioranza. Il 1438 e il 1448 sono anni che vedono Cusano impegnato
          in intense attività politiche ed ecclesiastiche, specialmente in
          Germania, sempre a favore del Papa. Continua a occuparsi della cura
          delle anime e della salvaguardia dei suoi benefici ecclesiastici. Si
          impegna nell’attività legale e di negoziazione, senza interrompere
          la costante applicazione allo studio e alla scrittura.

          Nel frattempo si dedica agli studi astronomici per preparare la
          riforma del calendario, e scrive il De reparatione
          calendarii. Nel 1440 torna da Costantinopoli, dove conosce
          Gemisto Pletone (ca. 1355–ca. 1450), Basilio Bessarione (1403–1472) e altri eminenti maestri. Da qui riporta la
          Theologia platonica di Proclo (412–485), che affida ad Ambrogio Traversari per la traduzione. Nel 1440, oltre che portare a termine
          il De docta ignorantia, inizia a scrivere il
          De deo abscodito e anche la sua seconda
          grande opera filosofica, il De coniecturis, a
          cui tuttavia Cusano continuerà a lavorare fino al 1444–1445[20].

          Nel 1442, in occasione della Dieta di Francoforte, dove si
          schiera a favore del Papa, Cusano scrive una lettera importante
          sulla sua dottrina della chiesa, a Rodrigo Sánchez de Arévalo (1404–1470), ambasciatore di Castiglia e Leon. Sempre
          durante quest’anno, scrive i brevi trattati teologici De quaerendo deum e De
          filiatione dei. A partire dal 1445, nell’arco di circa un
          quindicennio, fino al 1459, Cusano si cimenta in vari scritti che
          trattano questioni e problemi di carattere strettamente
          geometrico–matematico. Nel 1445 scrive il De
          geometricis transmutationibus e il De
          arithmeticis complementibus[21].

          Tra il 1445 e il 1446 compone il De dato patris
          luminum e nel 1446 scrive un breve trattato di previsione
          escatologica, Coniectura de ultimis diebus,
          fondata sul calcolo degli anni della vita di Cristo e i dialoghi De annuntiatione e De
          genesi (1447). Il 20 dicembre 1448, dopo essere stato nominato
          arcidiacono di Brabante da Eugenio IV, viene nominato cardinale dal nuovo Papa Niccolò V e il il 3 gennaio 1449 riceve il titolo di San Pietro in
          Vincoli.

          Nel 1449 Cusano è inviato come legato pontificio in Germania,
          dove scrive l’Apologia doctae ignorantiae, in
          cui il cardinale cerca di difendersi dalle false accuse di panteismo
          inflitte contro di lui da un teologo di Heidelberg, l’aristocratico
          Jean Wenck de Herrenberg (morte 1460), autore dell’opuscolo De
          ignota litteratura, nel quale Cusano viene apostrofato come
          pseudo–apostolo e pseudo–profeta. L’argomento portato a difesa da
          Cusano è lineare: è vero che tutte le cose sono in Dio, ma in Dio
          esse sono Dio stesso, ed è vero che Dio è in tutte le cose, ma anche
          nelle cose Dio non si riduce a qualcosa di particolare; Dio e le
          cose restano quindi distinti. L’impegno a favore della causa papale
          contro i conciliari di Basilea lo porta alla porpora
          cardinalizia.

          Nel 1450, l’anno del Giubileo, Cusano si reca a Roma, riceve da
          Niccolò V il cappello cardinalizio, viene nominato Vescovo–Principe
          di Bressanone e legato pontificio per la Predicazione del Giubileo
          in Germania. Il 1450 è un anno molto proficuo dal punto di vita
          della produzione letteraria del cardinale. Durante quest’anno scrive
          un opuscolo matematico, il De quadratura
          circuli, e un’altra opera importante, inaugurando la forma
          letteraria del dialogo, vale a dire i tre libri De
          idiota: I e II. De sapientia; III. De mente; IV. De staticis
          experimentis. Tra il 1451 e il 1452 Cusano viaggia
          instancabilmente come legato apostolico insieme a una trentina di
          persone, percorrendo circa 4500 chilometri, per lo più a dorso di un
          mulo, e attraversando molte città dell’Austria, della Germania e dei
          Paesi Bassi, dove egli predica, senza risparmiare le proprie forze,
          e si impegna, senza successo, in una riforma della chiesa tedesca,
          che investiva tutti gli ambiti della vita della chiesa, dalla
          liturgia all’economia, dalla condotta morale del clero alla vita
          degli ordini monastici[22]. Nel 1452, rientrato nella sua diocesi a Bressanone,
          inizia un’intensa attività di risanamento economico della diocesi,
          rivendicando antichi diritti territoriali (feudi, castelli, miniere)
          che de facto erano stati espropriati dai
          reggenti del Tirolo e dalle famiglie nobiliari locali. Cerca di
          mettere in pratica i suoi principi di una riforma della vita
          ecclesiale, specie nel suo aspetto morale che vorrebbe esemplare:
          come scrive Edmond Vansteenberghe (1881–1943), Cusano voleva fare di Bressanone «una
          diocesi modello» per virtù e serietà posta al confine culturale tra
          la Germania e l’Italia»[23], ma trova molte difficoltà e resistenze, arrivando a veri
          e propri scontri, come quello con le monache dell’abbazia di
          Sonnenburg, in Val Pusteria, e la loro badessa Verena von
          Stuben (nascita ca. 1410), la quale, appellandosi all’aiuto del
          Duca d’Austria Sigismondo (1427–1496) durante un’aspra disputa su
          alcune terre e alcuni diritti rivendicati dal vescovo, viene
          scomunicata da Cusano e costretta a lasciare il convento.

          Nel 1453, sconvolto dalla notizia della conquista di
          Costantinopoli da parte dei musulmani guidati da Muhammad II
          (1432–1481), Cusano scrive il De pace fidei,
          un’opera nella quale immagina sotto forma di una visione un concilio
          celeste di tutti i rappresentanti delle diverse tradizioni religiose
          capace di porre fine alle guerre e di assicurare una pace perpetua
          della fede. Lo stesso anno, nonostante l’episodio della lotta con
          Sigismondo, Cusano riesce a scrivere il De visione
          dei e il Complementum theologicum. Tra
          il 1453 e il 1454 compone il De mathematicis
          complementis (la prima edizione, in un libro, viene compiuta a
          Bressanone nel settembre del 1453, la seconda edizione, che include
          due libri, è ultimata nel novembre 1454). Nel 1454, anno in cui
          molto probabilmente scrive il De una recti
          curvique mensura, Cusano è inviato, con lettere riservate, per
          trattare con gli Ussiti e per risolvere la disputa con i Cavalieri
          dell’Ordine Teutonico.

          Nel 1457 si interessa sempre più ai problemi matematici e scrive
          il Dialogus de circuli quadratura. Dopo il
          lungo conflitto tra il cardinale e il duca del Tirolo e dopo alcuni
          tentativi di agguato, diverse minacce di morte e tentativi di
          avvelenamento, Cusano si convince della necessità di rifugiarsi nel
          castello di Andraz Buchenstein. Qui scrive il De
          caesarea circuli quadratura e il De
          beryllo, dove, metaforicamente, la pietra preziosa è concepita
          come una lente attraverso la quale è possibile vedere le verità
          invisibili.

          Dopo gli anni travagliati di Bressanone, nel 1458, papa Pio II,
          legato a Cusano fin dai tempi del Concilio di Basilea, invita Cusano
          a tornare a Roma e lo nomina legatus urbis.
          Anche qui, come durante il viaggio in Germania, Cusano si distingue
          per sobrietà e stile di vita. Scrive il De
          mathematica perfectione (in due versioni), ritenuto dallo
          stesso autore il migliore di tutti i suoi scritti matematici. Nel
          1459, in assenza del papa, tenta, come legatus
          urbis, di risolvere, senza grandi risultati, i conflitti tra
          famiglie nobili romane (Anguillara, Colonna, Savelli) e di
          realizzare, ancora una volta senza successo, una reformatio generalis della Chiesa: quest’ennesimo
          fallimento getta il cardinale nel più triste sconforto[24].

          In questo periodo di profonda delusione risale l’ultimo scritto
          matematico di Cusano, l’Aurea propositio in
          mathematicis, nonché una nuova e intensa lettura del Commentario di Proclo al Parmenide di Platone (il
          dialogo era stato integralmente tradotto in latino da Giorgio di
          Trebisonda (1395–ca. 1473) su commissione dello stesso Cusano nel
          1459), che Cusano avena citato espressamente per la prima volta nel
          De beryllo. A questa lettura del Commentario al Parmenide è ispirato il sermone
          De principio, nel quale Cusano riporta quasi
          letteralmente passi dell’opera di Proclo. Nello stesso anno scrive anche il De
          aequalitate.

          Sempre tra il 1459 e il 1460 Pietro Balbi di Pisa (1399–1479) traduce per Cusano il Didaskalikos di Albino/Alcino (II secolo d.C.) e la Teologia
          platonica di Proclo, l’opera che più di vent’anni prima Cusano aveva portato
          con sé da Costantinopoli e della quale Cusano può ora disporre di
          una traduzione completa. Le nuove letture che Cusano compie in
          questi anni svolgono un ruolo significativo nelle sue ultime opere,
          nelle quali il cardinale torna a riflettere sul rapporto tra Dio e
          mondo, in particolare sul rapporto tra esse e
          posse nell’Assoluto, un tema che verrà
          elaborato nel De possest, (1460), e
          approfondito successivamente nel Compendium
          (1463–1464) e nel De apice theoriae (1464).
          Sempre in questi anni Cusano cerca nuove formule per concepire il
          principio divino, come quella del non aliud,
          che dà il titolo al grande scritto che Cusano compone a Roma tra il
          1461 e 1462.

          Nel 1460, senza mai risparmiarsi, si impegna (raccogliendo
          tuttavia ancora delusioni e amarezze) nel contenzioso con il Duca
          del Tirolo e prevede anche una riforma della Curia e del governo
          della Chiesa. Dopo un’apparente riconciliazione con il Duca del
          Tirolo a Bressanone, Cusano è obbligato a rifugiarsi nell’Italia
          centrale. Nel 1461 scrive il De cribratione
          Alkorani dove confronta il cristianesimo con la religione
          musulmana.

          Oltre ai testi di Platone, l’interesse di Cusano negli ultimi
          anni della sua vita è rivolto ad Aristotele, come emerge già a partire del De
          beryllo. In verità, già prima di arrivare a Roma, Cusano si era
          procurato due importanti traduzioni, quella dell’Etica nicomachea di Leonardo Bruni (1370–1444) (cod. Cus. 179) e
          quella della Metafisica di Bessarione (cod. Cus. 184). Aveva inoltre a
          disposizione la traduzione del De vitis
          philosophorum di Diogene Laerzio (ca. 180–ca. 240), ed è proprio da questa lettura che
          nasce il De venatione sapientiae, scritto a
          Orvieto tra il 1462 e il 1463. Qui Cusano si trova per trascorrere
          alcuni mesi di cura dopo che l’anno precedente si era gravemente
          ammalato, molto probabilmente di una malattia intestinale che gli
          provocava dolori lancinanti. Sempre a Orvieto prepara l’edizione di
          tutte le sue opere mentre il progetto di riforma della chiesa
          esposto nella Reformatio generalis, elaborato
          negli anni precedenti, naufraga definitivamente, restando
          inattuato.

          Nel 1463 scrive il De ludo globi. Durante
          il suo viaggio da Roma ad Ancona, dove cerca di raccogliere truppe
          per la crociata lanciata da Pio II per contrastare la minaccia
          turca, Cusano muore a Todi, nel palazzo episcopale, in agosto, tre
          giorni prima di Pio II e poco prima della capitolazione di
          Sigismondo d’Austria. Il suo corpo è sepolto a Roma, nella chiesa di
          San Pietro in Vincoli, dove si trova ancora il suo monumento
          funerario. Il suo cuore, invece, così come aveva disposto, è sepolto
          a Kues nella cappella del Cusanusstift che
          Cusano aveva fondato (come parte di un lascito) nel 1458. Si
          trattava di un ospedale di carità, per 33 persone (in memoria degli
          anni di Cristo), di cui 6 nobili, 6 sacerdoti e 21 persone
          comuni.

          Nel Cusanusstift vi è tutt’oggi una delle
          più ricche biblioteche europee, la Biblioteca dell’Ospedale di San
          Nicola a Bernkastel–Kues, punto di riferimento degli studi
          cusaniani, dove sono custodite tutte le opere di Cusano e altri 1841
          manoscritti (tra cui 132 incunaboli, 153 titoli del XVI secolo, 323
          del XVII, 550 dei XVIII e 683 del XIX), divisi in argomenti, che
          spaziano dalla teologia pastorale alla psicologia, dalla letteratura
          mistica alla cosmologia)[25].
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  2. Cusano e la matematica

          Prima di indagare gli scritti matematici, è opportuno tener conto
          di alcune coordinate di fondo della filosofia della matematica
          elaborata da Cusano nei suoi scritti.

          Nel primo capitolo del De docta
          ignorantia, Cusano, analizzando il modo in cui procede la
          conoscenza razionale[1], afferma che ogni ricerca consiste nell’istituire un
          confronto tra due cose, di cui una è nota e l’altra è ciò che si
          intende conoscere. Mediante tale comparatio
          si giunge a individuare un rapporto (proportio), che permette di conoscere ciò che è
          ignoto[2]. Avendo carattere comparativo, la nostra conoscenza si
          basa fondamentale sulla misurazione, la quale non può realizzarsi
          senza il numero, che, afferma Cusano, costituisce la condizione
          necessaria di ogni comparazione[3] e, in quanto tale, è il principio formale di ogni atto
          conoscitivo della ragione[4]. Da ciò Cusano trae due conseguenze fondamentali. La prima
          è che l’infinito è per l’uomo inconoscibile, in quanto si sottrae a
          ogni proportio e a ogni comparatio[5]: «finiti ad infinitum nulla est proportio».[6] La seconda è che la «precisa veritas est
          incomprehensibilis»[7], ossia che è impossibile conoscere perfettamente (adaequate) le cose, il che conferisce alla nostra
          conoscenza un carattere strutturalmente congetturale[8].

          Misurando, inoltre, l’uomo diventa consapevole dei limiti della
          propria conoscenza e, facendo esperienza dell’impossibilità di
          raggiungere la conoscenza dell’ab–solutum,
          acquisisce la saggezza della consapevolezza della propria ignoranza,
          la docta ignorantia[9]. E, poiché il processo attraverso il quale comprendiamo è
          lo stesso che blocca l’accesso all’infinito e ci separa abissalmente
          da esso, alla mente non resta che vedere l’infinito
          prospettivamente, nella miriade di modi in cui si manifesta nel
          mondo finito, ossia nella molteplicità dei particolari che,
          «secundum plus et minus»[10], partecipano di essa[11]. L’infinito è per l’uomo un enigma insondabile, il cui
          mistero è penetrabile riconoscendo il significato dei segni
          soprannaturali di cui il mondo è intessuto, o, come scrive Cusano
          nel De filiatione dei, contemplando nelle
          cose sensibili («che sono segni del vero espressi attraverso
          simboli») le realtà intellettuali e da queste ascendendo, «con una
          qualche comparazione senza proporzione», alle realtà eterne[12].

          La sproporzione che sussiste tra finito e infinito è la stessa di
          quella esistente tra numero e unità o tra ciò che è curvo e ciò che
          è retto. Nell’infinito, nell’unità e nella rettitudine si realizza
          la perfetta uguaglianza, la praecisio
          absoluta («deus est ipsa absoluta praecisio»[13]) la quale tuttavia resta alla mente umana
          «inaccessibilis»[14], «inattingibilis»[15] o «in nullo cognoscibili cognoscitur»[16] o «impossibilis [est]in omni finito»[17].

          Cusano vede nella ratio o unitas
          aequalitatis la misura dell’essere e del conoscere: ogni
          misurazione, infatti, presuppone necessariamente un’unità di misura,
          «sine qua numerus non esset numerus»[18]. Questa unità assoluta, costituendo il principio della
          numerazione, sfugge, tuttavia, ad ogni misurazione[19]: essa «in pluralitate contracta est»[20] o, detto altrimenti, «numerus est explicatio
          unitatis»[21]. Questo vuol dure che l’unità non è mai visibile uti est, ma solo in
          alteritate[22]. Ma, come ogni realtà, in quanto è, partecipa[23]dell’uguaglianza secondo un diverso grado di proporzione,
          così ogni immagine, partecipando della verità nell’alterità del suo
          essere, è sempre lontana dalla verità del suo esemplare[24], che, in sé, è «imparticipabilis»[25].

          Tuttavia, tra tutte, le figure matematiche rappresentano per
          Cusano lo speculum più trasparente in cui la
          verità (ri)splende non come in una lontana immagine (remota similitudo), ma come nella più luminosa
          delle approssimazioni (fulgida
          propinquitas)[26]. La matematica, per Cusano, viene a configurarsi come la
          via regia del processo di assimilazione
          mediante cui il soggetto (la mente) cerca di eguagliare l’oggetto
          ineguagliabile (dio). Questo perché «mens nostra mathematicalia
          fabricat»[27]: essendo prodotti dalla mente, gli enti matematici non
          sono soggetti al mutamento che contrassegna i sensibilia e sono perciò dotate di maggiore
          certezza, anzi di una «fermissimam atque nobis certitudinem»[28].

          Tuttavia, proprio in quanto prodotti della ragione, gli enti
          matematici sono finiti e non possono essere raffigurati
          dall’immaginazione diversamente da come sono: «cum omnia
          mathematicalia sint finita et aliter etiam imaginari nequeant»[29]. Nella scia di Boezio (ca. 480–ca. 524)[30], infatti, Cusano afferma che qualsiasi figura si esplica
          necessariamente nella grandezza (magnitudo)
          ed è tale perché è una certa quantità[31], che differisce necessariamente da un’altra. In pratica il
          geometra vede la figura come entità separata dalla materia corporea
          e sensibile, ma non dalla materia intelligibile[32]: «sed materia eius magnitudo est, sine qua nihil concipit
          mathematicus»[33]. E tuttavia, mentre disegna un particolare triangolo o un
          particolare cerchio, il geometra guarda con la mente all’exemplar, ossia al modello infinito[34]. Il triangolo disegnato è in realtà infinito nella mente e
          non è soggetto alle dimensioni: non è pensato come grande o piccolo,
          ma come l’atto di tutti i triangoli possibili[35]. Nell’ambito geometrico–matematico l’infinito viene, per
          così dire, esperito «d[a]ll’intelletto insieme con
          l’immaginazione»[36].

          Ora, se la geometria è vista da Cusano come il terreno
          previlegiato in cui si può, certo modo,
          vedere l’infinito, questo deriva dal fatto che vi è un luogo
          geometrico in cui si realizza la perfetta uguaglianza del principio,
          ossia nella linea retta. La linea retta gode, infatti, di una
          proprietà “limite”: in essa sparisce ogni curvità, cessano di
          esistere il più e il meno di ciò che può essere più o meno curvo; i
          concetti di aumento e diminuzione si elidono perché coincidono
          nell’uguaglianza assoluta.
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È per questa proprietà che Cusano può affermare che ciò che è
          retto è misura di tutto ciò che è curvo[37]. Nel più e meno è implicito infatti un criterio di misura
          che postula l’esistenza di un ente uguale solo a se stesso rispetto
          al quale definire il più e il meno. Ciò che è curvo è più o meno
          curvo in base alla sua aderenza (partecipazione) alla retta, che,
          per definizione, è priva di curvità. E se è vero che non si può
          immaginare che il curvo arrivi a coincidere col retto anche dopo una
          successione infinita di curve sempre più aderenti ad esso, la retta
          resta tuttavia l’ultimo termine di riferimento, l’unità di misura
          per l’infinità delle linee curve.

          Così, nel concetto di rectitudo («la linea
          infinita è rettitudine infinita»[38]), o meglio nella paradossale soluzione del curvo nel
          retto, ossia nella perfetta uguaglianza della loro coincidenza,
          Cusano illustra geometricamente l’infinito in atto, fermo restando
          «l’impossibilità che esista una linea infinita in
          atto»[39].

          Nell’Apologia doctae ignorantiae, nel
          rispondere a Wenck che non riusciva a comprendere come l’infinito potesse
          essere misura dei finiti, dal momento che il finito non ha con
          l’infinito nessuna proportio[40], Cusano riprende l’esempio della linea infinita utilizzato
          nella sua prima opera, per mostrare come sia possibile pervenire «ad
          simpliciter infinitum»[41]. Ogni linea (finita) è, in sé, infinita, perché, pur
          essendo potenzialmente divisibile all’infinito, resta sempre una
          linea. Questo implica che «una linea finita è indivisibile nel suo
          esser linea […] Ne consegue che la linea infinita è la ragion
          d’essere della linea finita»[42]. Allo stesso modo, ogni linea, qualunque sia la sua
          misura, estesa all’infinito non è più una linea, ma si identifica
          con l’infinità stessa[43]. Nella linea infinita, dunque, vi è ogni linea finita,
          sebbene ciascuna linea finita ne partecipi in gradi diversi. In
          questo senso, la linea retta infinita costituisce l’esemplare di
          tutte le figure geometriche che si possono costruire con le
          linee[44].

          Ora, se è vero che l’infinito semplice comprende il massimo e il
          minimo assoluto, va detto che, poiché solo il massimo assoluto, che
          contiene tutto, include il minimo; solo il massimo assoluto è uguale
          a se stesso, e dunque in esso solo è fondata l’uguaglianza
          assoluta[45]. Così, nel massimo assoluto il cerchio è in ogni poligono,
          e ogni poligono è nel cerchio: l’uno è nell’altro, e c’è un solo
          perimetro infinito: la massima linea curva è uguale alla linea
          retta, così come lo è la minima linea curva[46]. Questo vuol dire che la curva, in sè, non è nulla, ma
          partecipa della rettitudine secondo un certo grado[47], e dunque, comparando la curva e la retta, si conclude che
          la linea retta partecipa della linea infinita più di quanto ne
          partecipi la linea curva: «premetto che la linea retta è più
          semplice della linea curva, in quanto la linea curva, deviando dalla
          linea retta, non può essere concepita senza il concavo e il
          convesso»[48].

          La linea infinita, a sua volta, cessa di essere linea perché essa
          non ha più né quantità né termine; la linea infinita non è più
          linea, ossia non è più un ens rationis, ma la
          stessa infinità, ossia uguaglianza assoluta[49]. Questo vuol dire che il maximum in
          se non è né linea, né triangolo, né cerchio, né sfera, «ma è
          piuttosto infinitamente e senza alcuna proporzione al di sopra di
          esse»[50].

          Dunque, attraverso un processo di infinitizzazione delle figure
          geometriche (linea, triangolo, cerchio, sfera), è possibile
          avvicinarsi all’«infinito semplice che è del tutto indipendente da
          ogni figura»[51]. Questo processo avviene, scrive Cusano, per additionem infinitatis[52]. Tuttavia, più che come l’attuazione dell’illimitato
          sviluppo di un’infinità potenziale, l’infinità si configura come
          rimozione del finito, ossia del limite, dal finito: «quando
          infinitas additur termino […] non aliud agit eius additio ad
          terminum quam removere terminum»[53]. Si potrebbe dire che l’additio
          infinitatis altro non è che un’ablatio
          finitatis. Così facendo, si intuisce, in una superiore visione
          mentale, lo stesso infinito sine termine[54], «et tuns nostra ignorantia incomprehensibilter
          docebitur»[55].

          Cusano sa che le figure infinite non esistono in actu. Esse sono semplicemente un «enigma
          intellettuale» – il più adeguato (propinquius) – per indicare Dio[56]. La transumptio attuata dalla
          matematica intellettuale, configurandosi come assimilatio del finito alla natura infinita
          divina[57], costituisce un’utile manuductio
          all’indagine umana intorno alle cose divine (in
          rebus divinis[58]) e rappresenta il terreno fertile per un’antropologia
          metafisica che cerca di conciliare il potere dell’uomo con
          l’infinita potenza di Dio mediante il principio della coincidentia oppositorum[59]. In questo senso David Albertson afferma: «Geometry was
          for him (i.e. Cusanus) a kind of mathematical laboratory for
          speculative discoveries, or better, a kind of playground where he
          could observe his mind’s movements and exercise it for theological
          tasks»[60].
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            [8] Cfr. Pasqua 2013, 345–357.

            [9] Cfr. Hofmann 1964, 169–183.

            [10] «la verità[…] può essere comunicata mediante una sua
              similitudine, la quale può essere recepita in modo maggiore o
              minore, conformemente alla disposizione di chi la riceve» (Cusanus 1988b, 18). Cfr. anche Cusanus 1972a, II, X, 155.

            [11] Cfr. Herold 1975, 2–3; Falckenberg 1880, 3; Koch 1953, 47–48.

            [12] Cusanus 1959b, II, 61, 6–7.

            [13] Cusanus 1983b, 29. Cfr. anche Cusanus 1983a, 31–44; Cusanus 2010c, 36.

            [14] Cusanus 2002, 33.

            [15] Cusanus 1983c, 173.

            [16] Cusanus 2010c, 36.

            [17] Cusanus 1972b, I, 9.

            [18] Cusanus 1972a, II, 3, 108; cfr. anche Cusanus 1972a, II, 3, 105–107.

            [19] «L’unità non può essere un numero perché il numero ammette
              sempre un più, per cui non può in alcun modo essere né il minimo
              in quanto tale, né il massimo in quanto tale. L’unità piuttosto
              è il principio di ogni numero, perché è il minimo; ed è il fine
              di ogni numero perché è il massimo» (Cusanus 1972a, I, 5, 14). Cfr. anche Cusanus 1964, Epilogus, 46; 14, 24–25; Cusanus 1972b, I, 5, 17; Cusanus 1988a, II–65; Cusanus 1982, 14, 24–25.

            [20] Cusanus 1972a, I, 2, 6.

            [21] Cusanus 1972a, II, 3, 108.

            [22] Sotto questo aspetto ogni individuo, nel suo essere
              contratto, non solo perfeziona il suo pensiero e il suo sapere
              (cfr. Stallmach 1989), ma acquista anche – e soprattutto – la dignità di un
              centro infinito di relazioni infinite (Pasqua 2015, 469–478). Se la complicatio viene a
              indicare l’identità in Dio di tutte le cose, l’explicatio, che dà luogo a una contractio (cfr. Cusanus 1972a, II, 4, 116), rappresenta il momento della distinzione, della non
              coincidenza tra creatore e creatura. La nozione di contrazione
              viene ad assumere un ruolo chiave nella spiegazione del rapporto
              tra Dio e il mondo: «unde quando recte consideratur de
              contractione, omnia sunt clara» (ivi, 114). Nel V capitolo del
              II libro del De docta ignorantia, Cusano
              descrive la relazione di ogni cosa con il tutto come
              contrazione: «...quodlibet recipit omnia, ut in ipso sint ipsum
              contracte. Cum quodlibet non possit esse actu omnia, cum sit
              contractum, contrahit omnia, ut sint ipsum» (ivi, 117). A
              sottolineare l’importanza che la categoria della relazione
              assume nel concetto cusaniano di contractio è Thomas Leinkauf, il quale,
              riconoscendo alla relazione la caratteristica peculiare della
              mente: «Das Kontrakt-Sein einer Sache ist ihr universaler
              Aspekt: nur wenn man am Einzelnen diesen Bezug auf das Ganze
              denkt, denkt man es als Einzelnes unverkürzt», valuta la
              molteplicità positivamente («als […] lebendige (dynamische)
              Einheit») e la differenza, o non–coincidenza, come espressione
              dell’attività stessa dell’assoluto: «Ausdruck des
              Identitäts-setzenden Tätigseins Gottes» (Leinkauf 2006, 172–179). Cfr. Hopkins 1983, 97–112.

            [23] Cfr. Cusanus 2001, 27, 20–27. Cusano afferma che ogni singola realtà, così come
              ogni forma di sapere partecipa dell’aequalitas: tuttavia, mentre la percezione
              sensibile coglie l’uguaglianza nella qualità, la facoltà
              immaginativa la coglie nella quantità, mentre l’intelletto è in
              grado di coglierla in se stessa, in quanto l’intelletto è ciò
              che più somiglia all’uguaglianza, essendo «aequalitatis species
              seu signum» (Cusanus 1964, X, 32). Cfr. anche Cusanus 1964, X, 33–34.

            [24] «nulla enim imago esse potest veritatis adaequata mensura,
              cum in eo, quod imago, deficit» (Cusanus 2002, 15, 20–21).

            [25] Cusanus 1988b, 18.

            [26] «in speculo mathematico verum illud, quod per omnes scibile
              quaeritur, reluceat non modo remota similitudine sed fulgida
              quadam propinquitate» (Cusanus 1994, I, 8–10). Cfr. anche Cusanus 1959b, 3, 65–68. Cfr. Cusanus 1972a, I, 11, 30, 4; XI, 20, 4; Cusanus 2001, 13, 23–25.

            [27] Cusanus 1988b, 32, 55. Cfr. anche Cusanus 1972b, I, 1. Sulla ricorrente concezione cusaniana di «mens
              humana» come «imago»», «similitudo» o «complicatio notionalis»,
              cfr. Cusanus 1983a, II, 58, 9–11; III, 73, 1; V, 74, 22; Cusanus 1988a, 91–92; Cusanus 1982, XVII, 49, 10; XXIX, 86, 3–19. I contenuti del sapere matematico, in quanto entia rationis, sono certi e precisi, per cui
              le leggi che esprimono le relazioni tra le cose sono le stesse
              della ragione. Va da sé che la certezza della matematica si
              riferisce solo a quella che Cusano definisce la matematica
              razionale, e non è applicabile a quella sensibile e
              intellettuale.

            [28] Cusanus 1972a, I, 13. Cfr. Cusanus 1972a, I, 2, 8, 31; I, 10, 27; I, 12, 33; Cusanus 1973, 63, 7–10. Cusanus 1983a, 7–103ss; Cusanus 1988b, 52, 1–7; 63, 6ss.; Cusanus 1994, 3, 75ss.; 5, 23–29. Sulla dottrina della complicatio ed explicatio, cfr. Gómez 1969, 134–140.

            [29] Cusanus 1972a, I, 13, 33.

            [30] Cfr. Boethius 1867, I, 8, 15; Cusanus 1972a, I, 11, 32; Cusanus 1983a, X, 126; Cusanus 1972b, I, 8, 35, 2; Cusanus 1964, V, 12.

            [31] «Homo[…]non videt figuram nisi quantam. Quantitas autem
              materiam supponit» (Cusanus 2001, 5, 15).

            [32] Cfr. Cusanus 1973, 63, 1–18.

            [33] Cusanus 1988b, 36, 63.

            [34] Scrive Cusano nel De possest: «[La
              matematica]non considera, infatti, il cerchio come esso è in un
              pavimento corruttibile, ma come esso è nel principio razionale
              (in sua ratione), ovvero nella sua
              definizione». (Cusanus 1973, 63, 12–15).

            [35] Wolfang Achtner mostra che per Cusano, come già per Gregorio
              di Nissa (ca. 335–ca. 394) e molto più tardi per Georg Cantor
              (1845–1918), un essere divino deve avere una natura veramente
              infinita, e non essere un potenziale infinito processo di
              crescita senza fine (Achtner 2011). L’autore mostra, inoltre, come per Cusano,
              profondamente influenzato dalla tradizione apofatica, l’infinito
              possa essere raggiunto dalla rappresentazione simbolica e dal
              ragionamento matematico asintotico, dando così un notevole
              contributo nel rendere l’infinito accessibile razionalmente
              (cfr. Achtner 2005, 392–411). Sul rapporto tra la concezione cusaniana di infinito
              matematico e la matematica scolastica, cfr. Werland 1986, 103–109.

            [36] Cfr. Cusanus 1973, 63, 16–18.

            [37] «il retto, come dice Aristotele, è la misura di se stesso e dell’obliquo» (Cusanus 1972a, I, 18, 53).

            [38] Cusanus 1972a, II, 1, 99.

            [39] Cusanus 2002, 48, 6–9. Cfr. Cusanus 1972a, I, 13, 35; I, 16, 46.

            [40] Cfr. Wenck 1910, 32, 7–9.

            [41] Cusanus 2002, 47, 9. Sul rapporto Wenck–Cusano, cfr. Haubst 1955.

            [42] Cfr. Cusanus 1972a, I, 18, 47, 6–7.

            [43] «Infinita linea non est linea, sed linea in infinitate est
              infinitas […]infinita quantitas non est quantitas, sed
              infinitas» (Cusanus 2000, XIII, 55, 8–12).

            [44] Cfr. Cusanus 1983b, II, 44. «Ma, per illustrare come Dio, considerato
              assolutamente in se stesso, sia l’atto di ogni potere, vale a
              dire la forma ad un tempo semplicissima e totalmente infinita,
              non vedo un’immagine intellettuale più appropriata di quella che
              si ha se si suppone una linea infinita. Nel mio trattato Sulla dotta ignoranza ho sostenuto che, se vi
              fosse una linea infinita, essa sarebbe l’atto di ogni poter
              essere di una linea, sarebbe cioè il limite di tutte le figure
              che possono essere delimitate attraverso una linea e il modello
              più adeguato di tutte le figure che possono essere tracciate
              mediante delle linee» (Cusanus 1973, 59, 1–7). Cfr. Cusanus 1972a, I, 13, 35.

            [45] «Solo il massimo, che è la ragion d’essere stessa infinita,
              può partecipare della ragion d’essere nella forma
              dell’uguaglianza somma» (Cusanus 1972a, I, 18, 47, 3–5), uguaglianza somma che si identifica nella
              uguaglianza dell’unità. Ancora, «come la linea infinita è la
              misura della linea retta e di quella curva, così il massimo è la
              misura di tutte le cose, le quali, in forme certamente diverse,
              partecipano tutte in qualche modo di lui» (Cusanus 1972a, I, 18, 52, 22–24).

            [46] «Qualcosa che sia curvo in modo massimo e in modo minimo non
              è che retto» (Cusanus 1972a, I, 18, 52). In Cusanus 1994, 13, 9–27 Cusano conclude che, poiché la linea circolare
              infinita è dritta, la linea retta infinita è la misura vera che
              misura la linea circolare infinita. Se la coincidenza degli
              opposti è come la circonferenza di un cerchio infinito, la
              differenza tra gli opposti è come la circonferenza di un
              poligono finito. Considerando, per esempio, la corda e l’arco di
              una circonferenza, egli nota che essi coincidono
              nell’infinitamente piccolo: «coincideret igitur ibi corda et
              arcus si ad minimam quantitatem in talibus deveniretur» (Cusanus 2010d, 4). Sul concetto di minimum in
              relazione al principio della coincidenza degli opposti, cfr.
              Bredow 1970, 357–366.

            [47] «Nè il curvo, in quanto curvo, è qualcosa in sè, poichè è una
              declinazione (casus) dal retto» (Cusanus 1972a, I, 18, 52). Cfr. anche Cusanus 1972a, II, 2, 99.

            [48] Cusanus 1982, 26, 74. Cfr. Yamaki 2005.

            [49] Cfr. Cusanus 2000, XIII, 57.

            [50] Cusanus 1972a, I, 20, 61. Cfr. Knobloch 2002, 223–234.

            [51] Cfr. Cusanus 1972a, I, 11, 33, 14–15. Cfr. anche Cusanus 1972a, I, 12, 37, 7–23; Vescovini 1998b, 31–48.

            [52] Cusanus 1994, III, 75–77.

            [53] Cusanus 1994, IV, 42–44. Ancora, nel De quaerendo dei,
              Cusano afferma
              «Est denique adhuc via intra te quaerendi deum, quae est ablationis
              terminatorum» (Cusanus 1959b, V, 49, 1).

            [54] «Et ita ex figuris multiangulis et circulo complicante omnes
              formabiles polygonias mens ascendit ad theologicas figuras et
              intuetur dimissis figuris virtutem infinitam primi principii»
              (Cusanus 1994, V, 23–26). Cfr. Nicolle 2005, 279–293; Vescovini 1972, 609–639.

            [55] Cusanus 1972a, I, 12, 33. Cfr. Celeyrette 2011, 151–165. Sull’importanza del processo del transferre in Cusano, cfr. Cuozzo 2002.

            [56] Cfr. anche Cusanus 2002, 46, 31; Cusanus 1983b, II, 43: «Per te ipsum hoc clarissime conspicis, quod infinita
              rectitudo se habet ad omnia sicut infinita linea, si foret, ad figuras».

            [57] Cfr. Cusanus 1972a, I, 13, 35; Cusanus 1972b, XII, 17, 175, 1–3, Cusanus 1982, XVII, 50, 1–5. Cfr. Moritz 2006, 260–264, in cui l’autrice mostra come la nozione cusaniana di
              transuptio abbia origine nella tradizione
              retorica antica.

            [58] Cfr. Cusanus 1972a, I, 11, 30, 4; 32, 26–28. Con la più chiara delle sintesi, Cusano scrive: «nos
              certos reddit sine haesitatione in theologicis id ipsum
              theologice, quod in mathematicis mathematice affermandum» (Cusanus 1994, II, 83–85). Sul processo di infinitizzazione delle figure
              geometriche e sul loro uso simbolico, cfr. Grell 1965, 33–41; Breidert 1977, 116–126; Oberrauch 1993b, 373–382; D’Amico 2005, 265–278; Counet 2005, 279–293; Yamaki 2005, 295–312; Brient 2006, 210–225; Nagel 2007; Rusconi 2012.

            [59] Cfr. Settignani 1922, 219–235.

            [60] Albertson 2014, 244. Cfr. anche Brient 2006.

            
  3. Gli scritti matematici

          
            3.1 Uno sguardo sinottico

            Dal breve profilo bio–bibliografico delineato emerge che
            Cusano, nell’arco di un quindicennio, tra il 1445 e il 1459, in
            mezzo a bufere politiche, conflitti territoriali, progetti di
            riforma e delusioni personali, pur se impegnato nell’attività
            legale e di negoziazione, riesce non solo a non interrompere la
            costante applicazione allo studio, ma anche a scrivere testi
            incentrati su tentativi geometrico-costruttivi atti a trovare la
            soluzione a un problema di carattere strettamente matematico: la
            quadratura del cerchio.

            Si tratta delle seguenti opere: De
            geometricis transmutationibus (1445), De
            arithmeticis complementis (due versioni; 1450), De circuli quadratura (luglio 1450), Quadratura circuli (estate 1453), De mathematicis complementis (la prima
            versione, in un libro, viene compiuta a Bressanone nel settembre
            del 1453, la seconda edizione, che include due libri, fu ultimata
            nel novembre 1454), Declaratio rectilineationis
            curvae (1454), De una recti curvique
            mensura (1454), Dialogus de circuli
            quadratura (1457), De caesarea circuli
            quadratura (1457), De mathematica
            perfectione (due versioni; 1458), Aurea
            propositio in mathematicis (1459).

            Questi scritti possono essere suddivise in tre parti. La prima
            comprende il De geometricis
            transmutationibus, il De arithmeticis
            complementis e il De circuli
            quadratura. Queste opere, scritte tra il 1445 e il 1450, sono
            strettamente collegate tra loro per contenuto e procedimento. In
            essi Cusano si sforza di portare a compimento la quadratura del
            cerchio attraverso il metodo dell’isoperimetria, che in queste
            opere è tuttavia soltanto abbozzato e non chiaramente
            spiegato.

            La seconda comprende il Quadratura
            circuli, la Declaratio rectilineationis
            curvae, il De una recti curvique
            mensura e l’opera maggiore, il De
            mathematicis complementis, elaborati tra il 1453 e il 1457.
            Cusano si propone di utilizzare poligoni dello stesso perimetro
            per formare un cerchio isoperimetrico, e realizzare così la
            quadratura del cerchio. Il procedimento e l’approssimazione cui dà
            luogo tale tentativo vengono sottoposti al giudizio di
            Toscanelli, le cui critiche costringono Cusano a rivedere le
            proprie posizioni.

            La terza parte consta di cinque opere, scritte tra il 1457 e il
            1459: l’opera che lo stesso Cusano considera come la più
            importante, il De mathematica perfectione
            (di cui è stata tramandata anche una forma
            prior), il Dialogus de circuli
            quadratura, il De caesarea circuli
            quadratura, l’Aurea propositio in
            mathematicis. In queste opere Cusano si sforza di correggere
            gli errori rilevati da Toscanelli nel De mathematicis complementis
            e cerca di portare a termine le questioni su cui ha meditato e
            contemplato nei primi scritti matematici.

            Tutti gli scritti matematici gravitano intorno alla vexata quaestio della quadratura del cerchio, a
            cui nessuno – sostiene Cusano nel De
            mathematicis complementis e, ancor prima, nel De quadratura circuli – ha saputo approssimarsi
            più di quanto abbia fatto Archimede (ca. 287a.C.–212 a.C.)[1]. Cusano, insieme a Luca Pacioli (ca. 1445–1517)[2], la cui Summa de arithmetica,
            geometria, proportioni et proportionalita (1494) costituisce
            l’opera più diffusa all’inizio del secolo, è il veicolo principale
            della trasmissione al Rinascimento europeo dell’immagine di
            Archimede[3] come del matematico che più di ogni altro si era
            prodigato per arrivare alla quadratura del cerchio[4]. Cusano poteva leggere l’opera del grande matematico
            siracusano nella nuova traduzione latina compiuta nel 1450 da
            Giacomo da Cremona, noto anche come Iacopo di San Cassiano (ca. 1395–ca. 1454)[5], sotto il patrocinio di Niccolò V[6], come si apprende dalla dedica al papa premessa al De mathematicis complementis. Nella terza
            proposizione della Misura del cerchio,
            l’opera di Archimede più popolare e nota già nel Medioevo, il matematico
            greco, attraverso costruzioni geometriche elementari – cioè
            avvalendosi di riga e compasso – cerca di costruire un quadrato
            della stessa area di un dato cerchio e, introducendo valori
            numerici e calcoli aritmetici, calcola il rapporto tra la
            lunghezza della circonferenza e quella del suo diametro,
            pervenendo ai famosi limiti di π ([image: 3 + 10/71 < n < 3 + 10/70]). Cusano
            era inoltre a conoscenza dell’altro e più complesso procedimento
            di determinazione della misura della circonferenza realizzato dal
            matematico greco nelle Spirali, come emerge
            nella Quadratura circuli, nel De mathematicis complementis e nel De mathematica perfectione[7].

            Sulla scia di Archimede, Cusano si propone di dare il complementum all’opera iniziata dal matematico
            greco e di risolvere il problema rimasto fino ad allora insoluto.
            Così, pur riconoscendo al matematico greco grande merito, da
            questi si distanzia circa la metodologia da utilizzare. Anzi,
            secondo Cusano, è proprio l’errata impostazione del problema
            accettata fino a quel momento ad aver reso impossibile la
            soluzione.

          
          
            3.2 Metodo di archificazione e coincidentia
            oppositorum

            In più passi il cardinale afferma che il motivo per cui gli
            antichi non sono riusciti nell’impresa è dovuto al fatto che essi
            si sono impegnati (invano) a cercare la quadratura del cerchio
            partendo dal cerchio, anziché dal quadrato. Dato un cerchio,
            Archimede aveva tentato di determinarne l’area costruendo una
            successione di poligoni regolari inscritti e circoscritti con
            numero rispettivamente crescente e decrescente di lati che
            assomigliavano sempre di più al cerchio. In questo modo il
            matematico era pervenuto ai limiti dell’area del cerchio.

            Tuttavia, incalza Cusano, per pervenire alla conoscenza di ciò
            che è ignoto occorre muovere da ciò che è noto. Il cerchio, al
            pari dell’infinito, non è misurabile, ma è essa stessa la
            misura[8], sicché non è possibile partire dal cerchio per giungere
            all’aequalitas con il quadrato. Per questo
            Cusano cerca di mettere in atto un altro metodo, che non sia
            quello di esaustione/compressione. Oltre a questo errore di
            prospettiva, Cusano individua un’altra motivazione, di natura
            ancora più profonda, del fallimento di coloro che lo hanno
            preceduto:

            Gli antichi hanno cercato l’arte di rendere il cerchio
            uguale al quadrato[...]; nell’uguaglianza hanno presupposto la
            coincidenza del cerchio e del quadrato [...], ma hanno fallito
            poiché la ragione non ammette la coincidenza degli opposti. La
            coincidenza infatti doveva essere cercata intellettualmente[9].

            
Per far sì che il quadrato sia uguale al cerchio è necessario
            che il quadrato si identifichi con il cerchio («in identitatem cum
            circulo se resolvat»[10]). Tale identità, tuttavia, non può essere raggiunta
            tramite la ragione (per rationem)[11], la quale giudica impossibile la coincidenza dei
            contraddittori[12], ma intellectualiter, ossia
            mediante una superiore visione mentale che scorge tale coincidenza
            all’infinito, attraverso la serie illimitata di determinazioni
            finite[13]. L’intuizione intellettuale è così in grado di cogliere
            ciò che non esiste come limite concreto[14].

            Nello specifico, la circostanza razionalmente inimmaginabile
            della coincidenza del curvo col retto può avvenire in due casi
            solo apparentemente distinti: nell’infinitamente grande e
            nell’infinitamente piccolo. Nel primo caso si può immaginare un
            poligono che al crescere indefinito dei suoi lati tende a
            coincidere con la circonferenza ad essa tangente. Nel secondo caso
            si può pensare di restringere, per così dire, all’infinito la
            corda (ossia il lato del poligono inscritto o circoscritto) fino a
            che essa non si distingua dall’arco di circonferenza sotteso. La
            perfezione matematica consiste nella reciproca commensurabilità
            (adaequatio) tra ciò che è retto e ciò che
            è curvo.

            La mia intenzione è quella di arrivare alla perfezione
            matematica attraverso la coincidenza degli opposti. E poiché
            questa perfezione consiste per tutti nel rendere una grandezza
            rettilinea uguale a una [grandezza] curvilinea, mi propongo di
            cercare il rapporto di due linee rette che stanno tra loro come la
            corda e il suo arco[15].

            
Negli scritti matematici il principio teo–epistemologico della
            coincidentia oppositorum costituisce il
            filo conduttore che lega i molteplici – e con variazioni in certi
            casi significative – tentativi di Cusano di quadrare il cerchio e
            viene ad assumere una forte e crescente tensione costruttiva.
            Ripercorrendo analiticamente il contenuto di tali scritti nel loro
            ordine di composizione, Joseph Ehrefried Hofmann ha rintracciato
            in essi uno sviluppo considerevole sul piano
            metodologico–scientifico, che dai primi incerti approcci alla
            questione dell’incommensurabilità retto/curvo, svolti nel primo
            scritto (De geometricis transmutationibus
            del 1445), attraverso un sistematico ricorso al principio
            sovrarazionale della coincidentia
            oppositorum, approderebbe nell’ultimo scritto (Aurea propositio del 1459) a un tentativo di
            fondazione esclusivamente razionale delle proprie
            argomentazioni[16].

            Ora, il procedimento più adatto a «figurare» geometricamente la
            coincidenza è quello dell’«archificazione»[17], che Cusano preferisce all’impostazione classica greca,
            a cui Archimede si manteneva sostanzialmente fedele e i cui risultati
            erano ritenuti esatti e non approssimativi durante tutto il
            Medioevo[18].

            Con «archificazione» s’intende un procedimento di
            determinazione degli angoli, tipica della matematica indiana, e,
            da questa, attraverso gli arabi, filtrato in Occidente, secondo
            cui l’angolo viene immaginato come il risultato di una curvatura
            (da ciò l’idea di archificazione) della retta e direttamente
            misurato, in quanto tale, sulla circonferenza di un cerchio.
            Questo procedimento differisce molto dalla matematica greca, che
            procedeva alla determinazione degli angoli attraverso i rapporti
            fra linee rette.

            Muovendo dal poligono regolare con il numero minore di lati (il
            triangolo equilatero) cui è inscritto e circoscritto un cerchio,
            Cusano osserva che al crescere dei lati dei poligoni
            isoperimetrici, attraverso quelle che egli chiama transmutationes geometrices, il cerchio
            inscritto e quello circoscritto finiscono per coincidere con la
            circonferenza, considerata come un poligono di un numero infinito
            di lati (e angoli). Di questa il cardinale cerca di calcolare il
            raggio come quella grandezza in cui la serie delle grandezze
            corrispondenti agli apotemi dei poligoni isoperimetrici di un
            numero sempre maggiore di lati e la serie, opposta alla prima,
            delle grandezze decrescenti corrispondenti ai raggi degli stessi
            poligoni, pervengono al loro punto di coincidenza[19]. In questo modo, percorrendo illimitatamente il finito,
            le figure, trapassando l’una nell’altra, entrano in una
            circolazione infinita, in cui il triangolo (la figura geometrica
            con il minor numero di lati e angoli) viene a coincidere con il
            cerchio (la figura geometrica con il numero infinito di lati e
            angoli), che complica in sé tutte le figure[20]. Dunque, attraverso un processo di infinita
            approssimazione asintotica, si giunge alla quadratura del cerchio
            o, per meglio dire, a una sorta di circolazione del quadrato[21].

            Non possiamo sapere se e quanto Cusano potesse, se pur
            indirettamente, essere a conoscenza dei precedenti indiani del suo
            metodo (anche se è certo che il suo corrispondente Georg von
            Peurbach (1423–1461) conosceva il valore indiano di [image: \pi=\sqrt10])[22]; certamente a quel tempo la matematica dell’Occidente
            latino derivava dalla mediazione operata dalla cultura araba sui
            testi di scienza e di filosofia greche e, soprattutto nel campo
            della trigonometria, il sapere arabo era largamente debitore di
            quello indiano. Detto ciò, è probabile che il particolare metodo
            di archificazione attraverso poligoni isoperimetrici seguito da
            Cusano sia stato influenzato dai riferimenti presenti nella Geometria speculativa di Bradwardine e dal trattato di Zenodoro (vissuto forse alla fine fine del sec. II a. C.), Sulle figure isoperimetriche[23].

            Non va neanche trascurata in proposito l’influenza che può
            avere esercitato su Cusano l’Ars magna di
            Lullo: oltre che ad aver potuto indirizzare Cusano verso il metodo
            degli isoperimetri, la matematica “empirica” di Lullo (presente
            nell’Ars magna e sviluppata nel De quadratura et triangulatura circuili e nel
            Liber de nova geometria)[24], pur costituendo un episodio del tutto insignificante
            sul piano propriamente scientifico, poteva avergli suggerito un
            approccio al problema della quadratura del cerchio che faceva leva
            sul presupposto che all’interno della realtà vi fosse il principio
            divino della sua strumentalizzazione e quindi della
            “manipolabilità” mentale delle strutture concettuali in funzione
            del conseguimento di una verità teologica[25].

            Questo approccio, sostanzialmente diverso rispetto alla rigida
            impalcatura assiomatico–deduttiva della scienza greca, pur essendo
            meno rigoroso, doveva apparire più duttile e funzionale allo scopo
            che Cusano intendeva perseguire, ossia l’«adaequatio recti et
            curvae», perché permetteva di muovere, di «transmutare» le figure
            l’una nell’altra fino a farle coincidere all’interno di uno spazio
            mobile, concepito come luogo di grandezze tanto rettilinee quanto
            curvilinee, di rapporti sia razionali sia irrazionali.

            In questo modo, attraverso la riproposizione del punto di vista
            banausico e non rigoroso dell’archificazione, il principio della
            coincidentia conferiva alla dimensione
            pratica della geometria una nuova rilevanza teorica.

          
          
            3.3 Dimensione pratica e dimensione teorica della
            geometria

            Dalla lettura degli Scripta mathematica
            emerge un dato di importanza capitale ai fini di un’analisi
            attenta della portata storica degli scritti matematici di Cusano.
            Le costruzioni cusaniane condotte secondo il procedimento
            dell’archificazione si configurano come tentativi di considerare
            nuovi punti di vista sul problema della quadratura del cerchio;
            emerge una nuova dimensione, quella della geometria pratica, in
            cui, nonostante la mancanza delle appropriate tecniche algebriche
            e geometriche che consentiranno nei secoli a venire lo sviluppo
            rigoroso di quei punti di vista, si esprimono una forza di
            immaginazione e una precisione di pensiero destinati a incidere
            non poco sulla problematica filosofico-scientifica dei tempi
            successivi.

            Va anche sottolineato che, nei medesimi anni in cui si dedica
            agli scritti matematici, Cusano scrive il De
            staticis experimentis (1450), in cui propone un metodo
            empirico di quadratura del cerchio. Nel quarto dei dialoghi
            dell’Idiota, il rapporto approssimativo tra
            il cerchio e il quadrato viene calcolato sperimentalmente con
            l’uso della bilancia[26].

            Per evidenziare la nuova prospettiva filosofica di Cusano,
            bisogna tenere presente, come ben sottolinea Luciana De
            Bernart[27], che, nella concezione della matematica del Medioevo –
            già presente in Boezio[28] e che Cusano eredita –, due sono gli aspetti
            predominanti: quello di derivazione “platonica” del suo rapporto
            con la teologia; e quello (apparentemente opposto) della sua
            applicabilità a problemi di misurazione, mentre scarsissimo era
            l’interesse per la matematica come struttura logica. Proprio
            questo secondo aspetto si era andato notevolmente sviluppando sia
            fuori che dentro le scuole nel XIII e XIV secolo, fino ad arrivare
            agli studi sulle proporzioni del movimento, sulle teorie di
            intensione (intensio) e remissione (remissio) delle forme, del minimo e del massimo
            proporzionale, temi che il cardinale mostra di conoscere bene nei
            suoi scritti[29], perché ampiamenti discussi nell’ambiente scientifico di
            Padova, in particolare da Biagio Pelacani e Prosdocimo. E se è vero che Cusano non parla mai di
            geometria pratica, né di geometria speculativa, è indubbio che
            conoscesse l’opera di Bradwardine e che da essa abbia tratto non pochi spunti[30].

            Tuttavia, mentre nell’ambiente padovano queste teorie erano
            state sviluppate in senso strettamente matematico o nella philosophia naturalis, Cusano le elabora in
            direzione teologica, secondo una tradizione già inaugurata dalle
            scuole ispirate alle ultime dottrine di Duns Scoto, Ockham, Marsilius d’Inghen (ca.1340–1396). Cusano realizza un’inedita saldatura
            tra i due aspetti della riflessione medievale e conferisce una
            rilevanza teorica alle ricerche pratico–geometriche, che vengono
            ora a configurarsi come tentativi di “applicazione” al mondo
            sensibile della verità del superiore principio della coincidentia oppositorum.

            Cusano opera dunque una sorta di inversione di rotta, anzi un
            vero e proprio rovesciamento, del tradizionale rapporto instaurato
            nel Medioevo tra geometria pratica e geometria speculativa:
            quest’ultima diventa ora non il mezzo, bensì il fine (e l’origine)
            della prima e la geometria, nella sua dimensione
            pratico–costruttiva, trova ora la sua legittimità in sede teorica,
            facendo uscire quest’ultima dai margini del modello
            assiomatico–costruttivo della geometria classica.

          
          
            3.4 Lo spazio come luogo della mente

            Un aspetto originale della dimensione concettuale entro cui si
            muove Cusano è l’idea di uno spazio “malleabile”, di una
            spazialità dotata di una fluidità intrinseca, che consente
            all’immaginazione di far tendere le determinazioni oppositive
            della ratio verso il punto metafisico
            (teologico) della loro coincidenza[31].

            Tale “fluidità” deriva dal fatto che, per Cusano, lo spazio
            geometrico è un prodotto della mente umana e, in quanto prodotto,
            può essere non solo misurato, ma anche, in qualche modo,
            manipolato. Se, infatti, è vero che lo spazio geometrico (mentale)
            e lo spazio fisico (reale) non corrispondono perché non derivano
            dallo stesso autore, è altrettanto vero che tanto l’autore (umano)
            dello spazio geometrico, quanto l’autore (divino) dello spazio
            fisico hanno la medesima potenza creatrice: questo di un infinito
            Uno assoluto, quello dei rapporti seriali, ossia di proporzioni
            continue attraverso cui le opposizioni dello spazio mentale
            tendono verso l’unità metrica[32]. Certamente, e Cusano lo dice espressamente nel De theologicis complementis, l’unità, nella
            quale gli opposti coincidono, è il fondamento originario ed è
            proprio perché pre–supposto che esso può fungere da punto di
            tendenza della serialità[33].

            La natura costruttiva – quindi dinamica e seriale – delle
            relazioni geometriche stabilite dal cardinale riflette a sua volta
            la concezione cusaniana dello spazio come il luogo della mens nel quale si esplica l’attività di mensura.[34] L’intelletto solo, in quanto uno e indivisibile –
            concezione che egli eredita molto probabilmente da Biagio
            Pelacani[35] – è in grado di stabilire rapporti proporzionali atti a
            far coincidere gli opposti nell’unità originaria ossia
            nell’uguaglianza assoluta. Proprio perché è proportio o ratio
            aequalitatis,[36] ossia una unità uguale a se stessa, identità
            indivisibile, la mente può mensurare, ossia
            stabilire rapporti di proporzionalità continua verso l’unità,
            nella quale «non nisi aequalitas videtur»[37].

            Come «il numero non dipende dalle cose numerate»[38], così le rappresentazioni/costruzioni non dipendono
            dalle figure rappresentate, bensì dall’attività
            dell’intelletto.

            Il concetto chiave espresso nel De docta
            ignorantia per cui la transumptio ad
            infinitum è possibile grazie al processo “aggiuntivo” di
            infinitizzazione dello spazio geometrico attuato dalla mente
            umana, è ripreso nell’Idiota de mente, del
            1450, opera scritta nello stesso periodo di composizione del De circuli quadratura, in cui Cusano scrive che
            «…mentem esse ex qua omnium rerum terminus et mensura»[39].

            La mente umana, simile alla mente divina[40], è una forza essenzialmente creativa, progettuale, che
            produce “da sé” i contenuti – in se sempre congetturali – del suo
            sapere[41]. Tali contenuti, ossia le nozioni, i concetti e le
            operazioni con i quali la mente cerca di quadrare il cerchio, la
            mente li trae, li dispiega e li sviluppa a partire da se stessa
            perché ad essa pre–disposti, e, in quanto tali, assimilabili[42].

            Più che l’attitudine, comune a molti esponenti della tradizione
            neoplatonica da Proclo in poi, ad assumere gli enti e le relazioni matematici
            come espressioni simboliche di verità trascendenti il piano
            razionale[43], a rendere “moderno” il pensiero di Cusano è la
            centralità del dinamismo creatore dello spirito umano, con cui
            Cusano cerca – in qualche modo – di superare la sproporzione tra
            finito e infinito, facendo coincidere gli opposti[44].

            Il problema matematico della quadratura del cerchio ha una
            natura paradossale perché illumina la mente della sua costitutiva
            opacità. La mente umana, confrontandosi con il problema della
            quadratura del cerchio, diventa consapevole che: 1. il suo
            ragionare è sempre oppositivo[45]; 2. è essa stessa il principio d’unità di quelle
            opposizioni.

            La ragione contraddice in un certo senso il proprio modus operandi: più tenta di elevarsi alla
            semplice unità in cui gli opposti non sono opposti, più diventa
            consapevole della sua impotenza e del suo legame necessario e
            imprescindibile con il mondo dell’alterità, trasportando così la
            divisione e l’opposizione dentro se stessa[46]. Tuttavia, proprio perché ha il potere («posse») di far
            coincidere gli opposti, ossia di tendere all’aequalitas, la mente assomiglia a dio. Una
            somiglianza che certamente non concerne i suoi prodotti,
            inevitabilmente destinati alla propinquitas
            e alla impraecisio, ma la sua capacità di
            costruire strumenti e determinare procedimenti (proportiones continuae) adeguati a far
            coincidere ciò che alla ragione appare come incommensurabile
            (quadrato/cerchio; retto/curvo) attraverso la logica eminentemente
            ‘seriale’ di mediazione degli «opposti» geometrici.

            La matematica, mostrando (alla ragione che la utilizza)
            l’impossibilità di pervenire all’absoluta
            praecisio, costituisce, per così dire, la condizione della
            possibilità di questa impossibilità; le ingegnose trasmutationes geometrices attraverso le quali
            Cusano cerca instancabilmente di giungere alla perfezione
            matematica, cioè alla quadratura del cerchio, dimostrano
            l’impossibilità di dimostrare la quadratura del cerchio perché l’aequalitas, nella quale gli opposti
            coincidono, è visibile solo trascendendo qualsiasi comparativa proportio: «cum inter illas
            quantitates adeo contraria forte non cadat numerabilis habitudo.
            Necesse erit igitur me recurrere ad visum intellectualem»[47].

          
          
            3.5 Le fonti

            Come abbiamo già evidenziato, le questioni relative alla
            quadratura del cerchio e alla rettificazione del cerchio non sono
            argomenti nuovi tra gli intellettuali del tempo: la maggior parte
            dei matematici del tempo s’interessa al metodo delle figure
            isoperimetriche[48], uno su tutti, Raimondo Lullo, il quale, nella Geometria Nova e, in particolare, nel De quadratura et triangulatura circuli[49], tenta di risolvere la questione della quadratura del
            cerchio.

            Il discorso sulle fonti è molto ampio e qui ci limiteremo a
            fare brevi accenni su alcuni autori a cui Cusano si ispira per le
            sue riflessioni sulla matematica[50]: da Anselmo d’Aosta (ca. 1033–1109) Cusano, come egli stesso afferma,
            desume l’esempio della rectitudo, ossia
            della linea retta, aenigma che ritrovava
            anche in Alberto Magno (ca. 1200–1280)[51], come apprendiamo dal De beryllo;
            nel De sigillo aeternitatis del suo amico e
            maestro Eimerico da Campo[52] (opera, posseduta dal Cusano e conservata ancora oggi
            nel Cod. Cus. foll. 106 s, 77r), Cusano trova l’esempio del triangolo
            infinito come espressione del massimo e l’immagine del cerchio con
            il triangolo inscritto e i raggi che partono dal centro[53].

            Sebbene non vi siano riferimenti espliciti negli Scritti matematici, sono molte le fonti che
            influenzano la filosofia matematica di Cusano, tra questi
            Plotino e Proclo, specie nella concezione generale della matematica come
            medium tra infinito e finito, e
            Boezio nell’idea della sproporzione tra finito e infinito,
            nonché dell’infinito potenziale del numero come modello per la
            ragione. Da Boezio Cusano riprende soprattutto la teoria delle mediazioni,
            delle proporzioni continue, che Cusano descrive in termini di medietas dupla, come i mezzi attraverso cui è
            possibile convergere tutte le disuguaglianze nel principio di
            uguaglianza da cui esse derivano. Ma, sebbene Boezio nelle Istitutiones
            arithmeticae[54] fornisca gli algoritmi per calcolare le incognite del
            rapporto, non sembra che Cusano ne tragga profitto. Cusano
            riprende solo l’idea che attraverso le proporzioni continue si può
            (ri)salire la scala dei numeri: egli non usa mai i numeri (solo un
            calcolo nella Quadratura circuli, che,
            tuttavia, non porta lontano) sia perché non aveva dimestichezza
            con i numeri, sia perché la quadratura del cerchio non avrebbe
            portato alla determinazione di un rapporto esprimibile attraverso
            i numeri interi.

            Se gli autori appena citati, insieme a molti altri che qui non
            possiamo analizzare (tra questi, Dionigi, Alberto Magno e Master Eckart), possono essere considerati le fonti della filosofia
            della matematica di Cusano[55], diverso è il discorso da farsi circa le fonti
            strettamente scientifiche del pensiero cusaniano. È molto
            difficile stabilire con precisione la lista delle opere possedute
            e consultate dal cardinale. Dalle citazioni esplicite nelle sue
            opere, si nota che i riferimenti sono rari e riguardano i veteres e mai i matematici a lui contemporanei.
            Si trovano citazioni delle opere dei matematici greci, soprattutto
            Euclide (Elementi, VI, 9) e
            Archimede (La misura del cerchio e Le spirali), ma i riferimenti sono sempre
            standardizzati e sporadici: è come se fosse un passaggio dovuto
            all’interno di un’operazione di volgarizzazione della matematica
            antica piuttosto che il frutto di una lettura diretta delle opere
            originali. Così sembra che egli legga Euclide attraverso il già citato Commento di Proclo, il Commento agli Elementi di
            Euclide di Campano da Novara (Johannes Campanus)
            (1255–1259)[56] e la Geometria speculativa di
            Bradwardine[57], di cui era noto anche il Tractatus de
            proportionibus (1328)[58]; e Archimede attraverso il De Arte mensurandi
            di Johannes de Muris (ca. 1290–ca. 1351)[59] o il De curvis superficiebus
            archimenidis di Johannes De Tinemue (vissuto agli inizi del
            XIII secolo). Tuttavia, è indubbio che Cusano vede Archimede come il punto di riferimento, il maestro che si intende
            superare; questi, infatti, all’interno delle opere matematiche, è
            molto più presente di Euclide, il quale sembra piuttosto un richiamo
            standardizzato.

            L’impressionante inventario della biblioteca di Cusano
            conservata a Kues realizzato agli inizi del Novecento da Joseph
            Marx[60] è inevitabilmente incompleto e a volte impreciso: una
            delle difficoltà è che ciascun volume rilegato contiene più opere
            i cui titoli non sono facilmente reperibili. D’altra parte questa
            biblioteca è stata largamente ampliata dopo la morte del suo
            fondatore, ma manca ancora un indice dei testi e il fatto che lo
            stesso Marx non abbia rilevato alcun titolo di Archimede o Euclide o Plotino fa pensare che questa non fosse “La” biblioteca di
            Cusano. Delle fonti arabe si trova qualche titolo nell’inventario,
            ma niente indica che Cusano ne abbia preso visione. Non c’è nelle
            opere matematiche alcun riferimento esplicito agli arabi, e
            nemmeno ad Al-Khwarizmi (ca. 780–ca. 850), sebbene sia evidente l’influsso
            della tradizione araba nell’uso di una certa terminologia
            utilizzata da Cusano, nonché nell’uso del metodo di
            archificazione[61]. Non si trovano nemmeno testi in ebraico. Le fonti
            matematiche di Cusano sono esclusivamente latine. Tra queste si
            può annoverare il già citato Johannes de Muris, il quale amplia le conoscenze del Quadrivium attraverso vari scritti, tra cui il
            De arte Mensurandi, commentate a Padova da
            Prosdocimo di Beldomandi[62]. Come scrive Graziella Federici Vescovini, «Prosdocimo
            fu l’anello di congiunzione tra l’insegnamento di Biagio da Parma
            e Nicola Cusano»[63].

            Certamente Biagio Pelacani, maestro di Prosdocimo, aveva lavorato molto in
            direzione di la teorizzazione di un’epistemologia di tipo
            matematico, secondo cui la verità ex suis
            terminis si basa sul concetto di precisio e scaturisce dalla nozione di ratio aequalitatis, e può essere colta solo
            dalle scienze matematiche.

            Un’altra fonte è Nicola d’Oresme. Molti argomenti e figure utilizzate da Cusano nel De una recti curvique mensura e nella seconda
            parte del De mathematicis complementis
            presentano palesi affinità con il Tractatus de
            configurationibus qualitatum et motuum del matematico
            francese. Tuttavia, la precipitazione con la quale Cusano redige
            la seconda parte dell’opera matematica più lunga e la densità dei
            riferimenti impliciti a Oresme suggeriscono una lettura rapida del Trattato di Oresme da parte di Cusano. Oltre a questi indizi, negli
            scritti dei 1453–1454 non si trovano ulteriori tracce di
            un’influenza del matematico francese[64].

          
          
            3.6 Cusanus… geometra ridiculus? La
            recezione degli scritti matematici

            Visti i numerosi e importanti legami di Cusano con i vari
            esponenti della cultura del tempo, è certo che i manoscritti
            matematici, composti tra il 1445 e il 1459, circolano da subito
            tra le persone con cui il cardinale può e sa di potersi
            confrontare riguardo a specifici argomenti, tra cui
            Toscanelli e Peurbach. Quando poi vengono pubblicati, gli scritti cusaniani
            si diffondono ancor più rapidamente, offrendo ai matematici del
            tempo un ricco materiale su cui riflettere. Il dibattito inizia
            ben presto visto che le due opere maggiori, il De mathematicis complementis del 1453–1454 e il
            De mathematica perfectione del 1458, sono
            pubblicate nell’edizione strasburghese delle opere di Cusano del
            1488 e in quella milanese del 1502; a queste si aggiungono,
            nell’edizione parigina curata da Lefevre d’Étaples del 1514, il De geometricis
            transmutationibus e il De aritmeticis
            complementis (entrambi del 1445).

            Nel 1533 viene pubblicato a Norimberga, ad opera di Johannes
            Schöner (1477–1547), un’opera (composta in realtà nel 1464) che
            segna la nascita della trigonometria moderna, ossia il De triangulis omnimodis di Regiomontanus, pseudonimo di Johannes Müller da Königsberg
            (1436–1476).

            Schöner non si limita a stampare il testo. In appendice a esso
            pubblica alcuni scritti di Cusano sulla quadratura del cerchio e
            la rettificazione della curva, più precisamente il De circuli quadratura del 1450 (che, insieme al
            capitoletto che l’accompagna nell’edizione norimberghese col
            titolo De sinibus et cordis, costituisce un
            abbozzo successivamente sviluppato nel primo libro del De mathematicis complementis[65]); il Dialogus de circuli
            quadratura, contenente una conversazione fra Toscanelli e il cardinale; una lettera di Toscanelli a Cusano che riporta una fondamentale obiezione al De mathematicis complementis e inopinatamente
            annessa da Schöner agli scritti di Cusano[66]; il testo Declaratio rectilineationis
            curvae, rivolto a Peurbach con l’intenzione di chiarire alcuni punti sempre del
            De mathematicis complementis, e infine il
            De una recti curvique mensura, anch’esso da
            considerare come un lavoro preparatorio alla stesura del De mathematicis complementis[67].

            Questi scritti erano stati inviati da Cusano al suo amico Georg
            von Peurbach e, attraverso questi, erano pervenuti all’allievo di
            Peurbach, appunto Regiomontano.

            Schöner, rinvenendo tra le carte di Regiomontano questi scritti, decide non solo di pubblicarli, ma di
            farli seguire, a loro volta, da altri lavori sempre di
            Regiomontano dedicati all’esame e alla confutazione del procedimento
            utilizzato da Cusano nei suoi scritti.

            Quest’edizione norimberghese è molto importante perché, pur
            comprendendo solo un’esigua parte dell’opera matematica cusaniana,
            dà conto del metodo di Cusano e documenta le obiezioni ad esso
            mosse da matematici specialisti come Toscanelli[68] e, soprattutto, Regiomontano. E tuttavia, questa edizione del 1533 non aggiunge
            molto alle informazioni che sul metodo cusaniano si potevano
            trarre dalle opere maggiori, in particolare dal De mathematicis complementis, opera rispetto a
            cui, come si è detto, gli scritti compresi nell’edizione
            norimberghese costituiscono per lo più dei lavori preparatori[69]. Dunque, già prima di – e indipendentemente da –
            l’edizione del 1533, le due opere maggiori del cardinale sono
            presenti, circolano e fanno discutere i cultori della matematica
            degli ultimi anni del XV e della prima metà – e oltre – del XVI
            secolo[70].

            Nel dialogo De quadratura circuli secundum
            Nicolaum Cusensem (composto nel 1464)[71] Regiomontano definisce infondati i calcoli «lulliani» di Cusano, il
            novello geometra al quale «obbediscono le linee e i numeri»[72], e definisce questi come un «geometra ridiculus
            Archimedisque aemulus»[73]. Il mos geometricum delle
            argomentazioni di Cusano utilizzate nella quadratura del cerchio è
            refutato dal Regiomontano perché totalmente sprovvisto di rigore e di un’adeguata
            formalizzazione matematica.

            Il giudizio severo di Regiomontano è mitigato da Gerolamo Cardano (1501–1576), il quale, nel suo Encomio della Geometria[74], pronunciato all’Accademia palatina di Milano nel 1535,
            tra i recentiores che si occupano di
            geometria, fa cenno a Cusano, il quale «disputò con tanta
            sottigliezza, che nulla si potrebbe escogitare di più acuto:
            tuttavia procedette in modo tale da mostrare non ciò verso cui
            tendeva, ma soltanto l’acume dell’ingegno, e le sue conclusioni
            furono per lo più false»[75]. In effetti, a dispetto delle conclusioni
            trionfalistiche e malgrado l’ingegnosità di cui fornisce prova,
            tutti i tentativi di Cusano di quadrare il cerchio approdano a un
            fallimento. È lo stesso Cusano ad ammettere nel De mathematica perfectione l’impossibilità
            dell’impresa sul piano della matematica razionale e la necessità
            di servirsi della matematica intellettuale, capace di cogliere la
            coincidenza degli opposti nel minimum
            simplex[76].

            E ha ragione Regiomontano, e prima di lui Toscanelli, a rinvenire nell’attrezzatura concettuale del
            cardinale un arsenale geometrico–matematico fatto di figure più o
            meno immaginariamente costruite, e non di espressioni algebriche
            corrette.

            Tuttavia, il livello delle argomentazioni cusaniane è notevole,
            e di queste si può comprendere la portata solo a patto di
            rispettarne, per quanto possibile, il decorso logico, che, per la
            sua peculiare natura filosofica – e non soltanto per
            l’inadeguatezza delle tecniche di calcolo storicamente disponibili
            (all’epoca non esistono il simbolismo algebrico, il metodo
            analitico, il concetto di funzione, definizioni precise per la
            trigonometria) – si presenta irriducibile ai presupposti
            eminentemente formali su cui si fonda la possibilità di applicare
            l’algebra alla geometria[77].

            Non bisogna dimenticare che l’intento che anima le indagini
            matematiche di Cusano è quello di mostrare la sorprendente potenza
            del principio della coincidenza e, da questo punto di vista, la
            quadratura del cerchio rappresenta ai suoi occhi un caso, il più
            “visibile”, di coincidentia oppositorum in
            atto[78]. Ed è soprattutto per questo aspetto che Giordano
            Bruno, ne La cena delle ceneri del
            1584, riconoscendo nel pensatore di Kues la fonte della propria
            ispirazione, appella Cusano come «divino»[79], nonché, nel quinto dialogo del De la
            causa, principio et Uno, come «inventor di piú bei secreti di
            geometria»[80].

            Negli scritti matematici di Cusano emerge la chiara
            consapevolezza che la condizione metodologica di possibilità del
            darsi della coincidentia non può che
            risiedere in una diversa impostazione geometrica, in una
            dimensione dello spazio come il luogo della mens–mensura. Certamente la nuova filosofia
            della mente resta irretita entro una forma eminentemente teologica
            di intuizione teorica che, di fatto, non permetteva di
            padroneggiare «la potenza insita nella serialità che tale
            intuizione conteneva e a sintetizzare la rigidità delle
            determinazioni geometriche e la mobilità operativa della mens»[81]. E tuttavia, proprio quell’intuizione dinamica, per
            quanto deformata dalla poderosa immaginazione teorica del
            filosofo, sarà uno stimolo di notevole portata innovativa ai nuovi
            «Archimede» del Rinascimento[82]. Sussumendo l’intrinseco e concreto movimento
            dell’attività di misura all’interno della dialettica astratta
            della mens, le costruzioni di Cusano
            suggeriranno ai posteri molto di più di quanto non siano in grado
            di dimostrare[83].

            Ora, se da un lato lo scritto di Regiomontano pone fra discorso filosofico e discorso matematico una
            barriera che sancisce l’esclusione dall’ambito della legittimità
            matematica, qualsiasi fattore immaginativo (che pure è
            indispensabile alla costruzione teorica)[84], dall’altro lato la pregnanza filosofico–concettuale dei
            tentativi cusaniani di quadratura del cerchio sollecitano lui e i
            matematici specialisti del tempo a una riflessione su nuove
            possibilità di sviluppo del discorso matematico, costringendoli,
            per così dire, a pensare nuovi approcci di tipo metrico–meccanico
            al problema dell’incommensurabile e nuove vie per pervenire
            all’aritmetizzazione della geometria[85].

            Da questo punto di vista, Cusano può essere considerato un
            pensatore–limite che, con le sue innovazioni teoriche, anche in
            campo matematico, seppe, come sintetizza felicemente John Hopkins,
            «spalancare la porta della modernità senza però riuscire a
            oltrepassarne la soglia»[86].

            Ancora, suggestionato dal principio lulliano di strumentalità
            del sapere, Cusano concepisce la mente umana in termini di
            «partecipazione» alla natura creativa della mente divina, il che
            si riflette sull’idea che la matematica non è solo theoria, bensì un modo per costruire i concetti
            necessari per comprendere il mondo, uno strumento operativo
            prodotto dalla mente dell’uomo per cogliere la struttura del
            mondo.

            La stessa idea che gli oggetti matematici non esistono
            indipendentemente dall’intelletto umano, ma ne sono una creazione,
            è una concezione della matematica che sarà accettata pienamente
            nel mondo scientifico soltanto nel XIX sec, fermo restando che in
            Cusano tale creazione non è assoluta, bensì partecipativa o
            assimilativa dell’assoluto.

            Nel De mathematicis complementis Cusano,
            dopo aver discusso l’opera con Toscanelli e Peurbach, propone un metodo di costruzione per approssimazioni
            successive del raggio di un cerchio di cui è nota la
            circonferenza[87]. Dalla conoscenza delle relazioni tra gli elementi della
            serie matematica Cusano deduce le proprietà matematiche dei valori
            limite della serie in questione. Questa intuizione fondamentale
            porterà alle soglie di una nuova matematica dei limiti e rivestirà
            un indubbio valore, facendo da base teorica per la legittimazione
            del metodo numerico e della concezione dei rapporti fra grandezze
            in termini «funzionali», anche se l’assunto di Cusano
            sull’esistenza di una relazione tra raggio e superficie dei
            poligoni inscritti e circoscritti al cerchio è errata. Già
            Toscanelli gli indicherà l’errore in una lettera scritta
            nell’inverno del 1453–1454[88].

            L’idea che il cerchio è un poligono con un numero infinito di
            lati sarà ripresa nella metà del Cinquecento dal monaco matematico
            Michael Stifel (ca. 1487–1567), il quale nell’Arithmetica integra del 1544 riprende anche
            l’idea cusaniana della connessione esistente tra progressioni
            aritmetiche e progressioni geometriche. La stessa idea ricompare
            nei Discorsi del 1638 di Galileo
            Galilei (1564–1642), il quale, peraltro, non fa alcuna menzione
            di Cusano[89]. Tuttavia, molti elementi indicano che egli sia
            influenzato dalla sua opera, e ciò vale in particolare per il
            concetto di ‘non quantità’. Cusano difatti parla di un ‘non
            triangolo’, nel caso in cui in un triangolo l’ampiezza dell’angolo
            opposto alla base è progressivamente aumentata sino a 180°, in
            quanto in questo caso il triangolo si annulla trasformandosi in
            una retta. Le indagini di Cusano saranno riprese o usate in modo
            più o meno critico da molti autori del XVI sec. che si occuperanno
            del problema della quadratura del cerchio o del calcolo di π, tra
            i quali Oronce Finé (1494–1555) (1544), Jean Borrel o Buteus (1492–1572) (1559) e Cristophorus Clavius (1537–1612) (1604). Ludolph van Ceulen (1540–1610) sarà
            uno dei primi a valutare le idee di Cusano senza lasciarsi
            influenzare dalle critiche di Regiomontano, e ne darà un giudizio altamente positivo. Nel suo
            scritto Van den Circkel (1569), usando il
            metodo di Archimede dei poligoni inscritti e circoscritti a un cerchio,
            egli calcola il valore di π sino alla ventesima cifra decimale
            esatta, e successivamente sino alla trentacinquesima cifra esatta.
            Un giudizio critico su Cusano sarà espresso invece da Adrian van
            Roomen (1561–1615), un altro rappresentante della scuola
            matematica olandese tra il XVI e il XVII secolo. Nel suo
            scritto In Archimedis circuli dimensionem
            expositio et analysis (1597), oltre che criticare Cusano,
            egli respinge anche i calcoli errati di Oronce Finé (1494–1555), Giuseppe Giusto Scaligero (1540–1609) e Raymarus Ursus (1551–1600). Nel 1594, nella sua confutazione
            dell’errata quadratura del cerchio di Scaligero, François Viète (1540–1603), dimostrerà che nel De mathematica perfectione (1458) Cusano non
            fornisce una soluzione per approssimazione, bensì un limite
            superiore per tutte le soluzioni approssimate con l’ausilio di
            poligoni isoperimetrici: [image: r\lesssim(2r_{n}+ \rho_n)/3], dove [image: r_n] e [image: \rho_n] sono i raggi di una
            successione di poligoni regolari inscritti e circoscritti al
            cerchio, isoperimetrici a un cerchio di raggio r[90].

            È inoltre evidente l’influenza che le sue riflessione
            eserciteranno su alcuni pensatori del Cinquecento, ad esempio sul
            cusaniano Charles De Bouelles (ca. 1475–ca. 1553), la cui Géométrie
            practique (edita e riedita dal 1546 ai primi del Settecento)
            godrà di notevole diffusione e apprezzamento fra i cultori della
            matematica della Francia della seconda metà del ’500[91].

            Anche la problematica sul concetto di minimo e di massimo,
            ampiamente utilizzato negli scritti matematici, influenzerà
            profondamente i pensatori successivi, tra cui Johannes
            Kepler (1571–1630), il quale, nel Mysterium
            Cosmographicum (1596), esprime la sua ammirazione per il
            cardinale, lo nomina come suo precursore e lo chiama con
            entusiasmo «Cusanus mihi divinus»[92]. Le stesse riflessioni cusaniane sul concetto di
            continuo, di indivisibile, di limite e illimitato, saranno
            certamente feconde per la formazione e lo sviluppo del concetto di
            infinitesimo[93]. Anche nella legge di continuità formulata da Gottfried
            Wilhelm von Leibniz (1646–1716) è sotteso il principio cusaniano della
            coincidenza[94].

            In questa scia, nel 1747, Abraham Kästner (1719–1800), architetto tedesco e maestro di Carl
            Friedrich Gauss (1777–1855), debitore anch’egli delle intuizioni
            geometriche del cardinale[95], in Das Lob der Sternkunst[96] definisce Cusano, insieme a Copernico, come uno dei due «Wiederhersteller des wahren
            Weltgebäudes» e mostra come il cardinale, nelle sue considerazioni
            sull’infinito, arrivi a contemplare, senza tuttavia approfondire,
            il calcolo infinitesimale: «Er dachte an vergängliche Größen, nur
            er wußte nicht, wie diese Vorstellung benutzt werden würde»[97].

            Moritz Cantor (1829–1920), primo professore di storia della
            matematica della Germania, nelle sue Vorlesungen
            über Geschichte der Mathematik, dedica molto spazio a Cusano
            e fornisce un’esposizione chiara del metodo di quadratura esposto
            nel De mathematicis complementis, che ha il
            pregio di non limitarsi, come spesso è stato fatto dagli studiosi
            della matematica di Cusano, a tradurre in linguaggio algebrico
            moderno i risultati dell’argomentazione di Cusano, per verificarne
            su questa base i limiti di attendibilità, ma di cercare di seguire
            le fasi delle argomentazioni cusaniane[98].

            Ancora, dalla metà del secolo scorso sono stati prodotti studi
            specifici sulle opere matematiche di Cusano, che, nonostante – e
            forse grazie a – gli inevitabili limiti dell’impostazione
            metodologica –, sottolineano l’importanza degli scritti matematici
            di Cusano nell’ambito dello sviluppo di quella forma mentis matematica tipicamente moderna che
            si è andata progressivamente affermando tra il XV e ei XVI secolo
            attraverso cunicoli spesso oscuri e inconsapevoli[99].
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                Spontaneität gekennzeichnet ist, so der endliche Geist
                als endlicher gerade durch den assimilativen und konformativen Charakter
                eben dieser schöpferischen Tätigkeit. Sein Begreifen ist entium assimilatio so wie das göttliche entium creatio ist. Der menschliche Geist
                hat seine eigene Welt, sein eigenes Universum, aber dieses ist
                eine universitas assimilationis rerum»
                (Stallmach 1967, 50–54, cit. 52).

              [43] Le parole pronunciate da Proclo nella Teologia platonica
                circa «l’attitudine ad elevare propria del numero» (Proclus 2005, IV, 34, 16–23, trad. 599) sembrano quasi riecheggiare nell’incipit del De circuli
                quadratura, in cui Cusano esordisce dicendo: «All’inizio
                ti ho invitato a passare da queste matematiche alla teologia
                attraverso la via dell’assimilazione; questo, infatti, è il
                modo più adatto di elevarsi» (Cusanus 2010c, 28ss.).

              [44] Cfr. Oberrauch 1993a.

              [45] «In Metaphysica autem dicit curvum et rectum in natura
                contrariari, quare unum non posse converti in aliud» (Cusanus 1988c, XXVIII, 45). Nella stessa scia, Vengeon 2006, 222: «...selon lui, l’impossibilité de la quadrature du
                cercle équivaut à l’expression géométrique du principe de non
                contradiction».

              [46] Cfr. Cuozzo 2002, 47ss.; Cusanus 2010h, 25–30. In questo senso si può dire che la ragione ha una
                natura paradossale in quanto è essa stessa la condizione di
                possibilità dell’impossibilità di cogliere l’infinito. Sul
                tema cfr. De Felice 2019, 61–76.

              [47] Cfr. Cusanus 2010d, 2–3. Cfr. Cusanus 1994, II–III.

              [48] Cfr. Gericke 1982, 160–187; Di Meglio 2010, 15–21.

              [49] Cfr. Hofmann 1942, 21–37.

              [50] Cfr. Flasch 2008; Nicolle 1998, 128–150.

              [51] Cfr. Haubst 1952b, 420–447.

              [52] Cfr. De Campo 2001a, 93–128 e De Campo 2001b, 129–168.

              [53] Cfr. Haubst 1952a, 255ss.; Rusconi 2008, 59–70. Per quel che concerne l’influenza lulliana e il
                ruolo di mediazione svolto da Eimerico, cfr. Hofmann 1942, 21–37; Colomer 1964, 198–213; Colomer 1961; Vescovini 2005b, 139–154; Calma e Imbach 2009, 15–51; Imbach 2011.

              [54] Cfr. Boethius 1867, 2, 50, 7–12.

              [55] Oltre a quelli citati, di particolare interesse sono gli
                studi di Vansteenberghe 1928, 275–284 e di Vescovini 1997, 393–413 e 1983, 661–684, che mettono in luce l’origine ermetica della
                matematica di Cusano, impostando le basi per un confronto tra
                l’opera del cardinale e quella di Bonaventura di
                Bagnoregio (ca. 1217–1274).

              [56] La versione latina degli Elementi di
                Euclide, realizzata da Campano dall’arabo, probabilmente
                elaborata sulla base della traduzione in latino di Adelardo di
                Bath (XII sec.), viene pubblicata da Ehrard Ratdolt a
                Venezia nel 1482 e costituisce la prima edizione stampata di
                Euclide. In seguito Simon Grynaeus curerà l’editio princeps in
                greco nel 1533, alla quale aggiungerà il testo greco del
                Commento al I libro di Proclo. Nel frattempo appariranno due edizioni latine ad
                opera di Bartolomeo Zamberti (ca. 1473–ca.1543) nel 1505 e di Luca Pacioli nel 1509 che si richiamano rispettivamente alla
                tradizione greca di Teone di Alessandria (commentatore di Euclide vissuto nel IV secolo) e alla tradizione latina di
                Campano. Un’edizione comparata delle due traduzioni latine
                verrà pubblicata da Jacques Lefèvre d’Etaples a Parigi nel 1516. Cfr. Crapulli 1969, 14–15. Cfr. Kästner 1796–1800, 289–299; Weissenborn 1882, 1–7; Heath 1926, I–92ss.

              [57] Di questo testo, così come dell’Arithmetica speculativa, non abbiamo
                notizie certe sulla data di pubblicazione. Cfr. Bradwardine 1495b, 115–120.

              [58] Cfr. Bradwardine 1328, 64–140.

              [59] Cfr. De Muris 1998.

              [60] Cfr. Marx 1905.

              [61] Stuloff 1964, 420–436.

              [62] Cfr. Santinello 1983, 71–84; Vescovini 2002, 93–113; Favaro 1879; Belloni 1986.

              [63] Vescovini 2005b, 223–240, cit. 230.

              [64] Cfr. Clagett 1968.

              [65] Cfr. Hofmann e Hofmann 1980, XXXI, nota 15, 212. Cfr. Regiomontanus 1533, 13–21.

              [66] Cfr. Hofmann e Hofmann 1980, XXXII.

              [67] Cfr.Hofmann e Hofmann 1980, XXXV, nota 1, 237; nota 8, 239.

              [68] Cfr. Cusanus 2010f, 229–232; Sambin 1979, 141–145.

              [69] Solo nel 1565 si procedette a scorporare gli scritti
                cusaniani dell’edizione norimberghese dalla critica di
                Regiomontano e a comprenderli nell’edizione di Basilea. Per le
                informazioni sulle edizioni degli Scritti
                matematici di Cusano, cfr. Hofmann e Hofmann 1980, LI–LII.

              [70] Da questo punto di vista, concordiamo con l’analisi di
                Luciana De Bernart, secondo cui «la risonanza dell’edizione
                norimberghese degli scritti di Cusano va considerata sono un
                episodio, anche se di estrema importanza, nel quadro
                dell’influenza dell’opera matematica cusaniana sul pensiero
                matematico successivo» (De Bernart 2002b, 38).

              [71] Regiomontanus 1533, 22–28.

              [72] Regiomontanus 1533, 27.

              [73] Cfr. Hofmann e Hofmann 1980, XII–XXXII; Santinello 1971, 104.

              [74] Cfr. Cardano 1663, IV.

              [75] Cardano 1663, II, 443b–444a.

              [76] Cfr. Counet 2005, 286–290.

              [77] Da questo punto di vista, Müller parla di una doppia
                matematica in Cusano: una geometria aritmetica (matematica
                deduttiva) e una geometria speculativa (matematica induttiva),
                mostrando, nella scia delle analisi di Bocken 2005, 201–220, che vi è un gap, all’interno
                della riflessione cusaniana, circa il rapporto tra algebra e
                geometria (cfr. Müller 2010, 45–46; 76–77).

              [78] Cfr. Counet 2000.

              [79] Bruno 1985, 91.

              [80] Bruno 1985, 335.

              [81] De Bernart 2002b, 61.

              [82] Folkerts non esita a definire la matematica cusaniana come
                un prezioso contributo espresso, tuttavia, in una forma
                inadeguata: «Allerdings hat die unzureichende mathematische
                Form dazu geführt, daß der wertvolle Gehalt seiner
                mathematischen Schriften in Vergessenheit geriet. Erst im 20.
                Jahrhundert haben sich die Mathematikhistoriker, vor allem J.
                E. Hofmann, ernsthaft mit den Schriften des Cusanus
                beschäftigt und festgestellt, daß sich hinter seinen
                Formulierungen zukunft-sweisende Ideen verbergen, u. a.
                infinitesimale Ansätze und Vorstellungen über funktionale
                Abhängigkeiten. Daher kann man Cusanus als einen Wegbereiter
                der neuzeitliche Mathematik sehen» (Folkerts 2003, 332).

              [83] La lettura dello spazio geometrico si riflette sulla
                concezione cusaniana del movimento, che risulta eminentemente
                estensiva, senza tuttavia riuscire a contemplare il fattore
                temporale. Come mostra De Bernart, questa mancata intuizione –
                presente tra l’altra già in Archimede – non permette a Cusano di tradurre in termini di
                uniformità la differenza dei percorsi cinematici generatori
                delle grandezze, il che rende praticamente impossibile portare
                a termine le trasmutationes geometrices
                messe in atto al fine di giungere alla quadratura del cerchio
                (cfr. De Bernart 2002b, 61–62).

              [84] Cfr. Baldi 2007, 255–266, spec. 262–263.

              [85] Cfr. Müller 2014, 86–102. Conclude sinteticamente Simon: «Hätte Cusan die
                theoretische Durchbildung Regiomontans besessen und wäre seine Zeit nicht durch den Dienst
                der Kirche und den beklagenswerten Kampf um sein Bistum Brixen
                so völlig in Anspruch genommen worden, Cusan stände als reiner
                Mathematiker eben so groß da, wie als Theosoph und
                mathematischer Philosoph» (Simon 1912, 128–337).

              [86] Hopkins 1996, 83. Cfr. anche Gadamer 1970, 39–48; Cassirer 1920. A sottolineare la natura ambigua, persino
                contraddittoria, dell’opera politica, metafisica e scientifica
                di Cusano è Maurizi 2008, il quale, analizzando i concetti di concordantia, coincidentia e praecisio, vede nella filosofia di Cusano
                l’espressione di una ricerca provocante, capace di interrogare
                la modernità stessa.

              [87] Cfr. Uzielli 1894; De Bernart 1999.

              [88] Cfr. Cusanus 2010f, 6. Sul ruolo di mediazione svolto da Toscanelli tra Cusano e gli intellettuali del Quattrocento
                italiano, cfr. Flasch 2002, 175–193, spec. 182ss..

              [89] Cfr. AA.VV. 1964; Orbetello 1965.

              [90] Cfr. Nagel 2007; Watanabe 2011.

              [91] Cfr. Hofmann e Hofmann 1980, XI–XII; Klibansky 1980, 358–362.

              [92] Cfr. Johannes 1938, II, 23. Sull’influenza di Cusano su Kepler, cfr. Omodeo 2014, 215–226; Bialas 2003, 45–53; Koyré 1973, 336.

              [93] Cfr. Vescovini 1998a, 107: «Tuttavia anche sul piano strettamente matematico
                Cusano ha avuto il merito di introdurre una problematica sul
                concetto di minimo e di massimo, di indivisibile, tutta una
                tematica del limite e dell’illimitato, delle grandezze
                infinite, che è stata certamente feconda nella direzione della
                riflessione successiva sul concetto di infinitesimo».

              [94] Roth 1997, 63–80; Glezer 2018, 51–55.

              [95] Cfr. Gauss 1984, 435–455.

              [96] Si tratta di un lungo articolo scritto da Kästner nel 1747 e pubblicato nell’Hamburgische Magazine.
                L’articolo è stato riprodotto in Kirsch 2007.

              [97] Kirsch 2007, 4–22. Cfr. anche Nagel 2007.

              [98] Cfr. Cantor 1965, 51–203.

              [99] Cfr. Hofmann 1967, 124–154; Hofmann 1970, 385–398; De Gandillac 1937, 127–133; Stuloff 1967, 55–64; AA.VV. 1970.

              
  4. Codici manoscritti ed edizioni a stampa

          In linea con la versione critica, sono qui riportati, in ordine
          alfabetico, i codici e le edizioni a stampa contenenti gli scritti
          matematici di Cusano, con le relative abbreviazioni che sono
          utilizzate nelle note dei singoli scritti.

          
            4.1 Codici

            A = codice milanese
            della biblioteca ambrosiana. G 74, inf. (Milano, biblioteca
            ambrosiana)[1].

            Si tratta di un codice cartaceo, di 20 fogli, (XV secolo),
            contenente solo i testi matematici.

            f. Iv–2r : Aurea propositio in
            mathematicis

            f. 3r–4r: De caesarea circuli
            quadratura

            f. 5r–20r: De mathematicis
            complementis (testo più lungo)

             Bb = Codice della biblioteca apostolica
            vaticana, Barb. Lat. 350 (indicazione precedente: X. 168) (Città
            del Vaticano)[2].

            Si tratta di un codice di 92 fogli, composto da 8 parti
            diverse, scritto tra il XIV e XV secolo. Gli scritti matematici di
            Cusano sono contenuti nella parte 3 e 4:

            f. 20v–23r: De una recti curvique
            mensura

            f. 43r–60r: De mathematicis
            complementis (testo più lungo)

            Bl = codice della biblioteca regia di
            Bruxelles, 2962–2978[3].

            Si tratta di un codice di 248 fogli (scritto tra il 1500 e il
            1510), che contiene la maggior parte dei testi di fisica e due
            scritti matematici di Cusano.

            f. 45r–77r: De mathematicis
            complementis (testo più lungo)

            f. 78r–88r: De mathematica
            perfectione

            I testi sono scritti in maniera chiara. Il paragrafo 39, che
            mancava nel primo, fu aggiunto molto probabilmente da un altro
            amanuense dopo la fine del primo libro. Il secondo libro non è
            integro, mancano molte pagine (f. 63v
            e f. 68rv, f. 73v–74r), ma le
            figure sono presenti.

             Br = codice della biblioteca regia di
            Bruxelles, 11479–11484[4].

            Si tratta di un codice di 78 fogli, scritto nel XV secolo. Nel
            foglio 59 si legge: «Ex dono Heymerici de Campo patri Oliverii. Lovanium». Il codice contiene due
            scritti di Cusano:

            f. 59r–65v: De mathematicis
            complementis (testo più breve)

            f. 68r–78v: De theologicis
            complementis

            I testi matematici sono trascritti da un’unica mano. Nel De mathematicis complementis ci sono poche
            correzioni e diverse sottolineature alle proposizioni; molte note
            sono scritte a margine da un amanuense successivo. Le figure non
            mancano.

            C = Codice della biblioteca dell’ospedale di
            San Nicola, cod. 218 (Bernkastel–Kues)[5].

            Il codice, di 141 fogli, contiene, insieme al codice Cu, 21 opere di Cusano, che Pierre Peter Wymar
            von Erkelenz, segretario del cardinale Cusano, ebbe cura di riunire.
            Verosimilmente i codici C e Cu furono scritti a Roma tra il 1458 e il 1464.
            Lo stesso Cusano esaminò attentamente i codici, corresse molti
            punti e aggiunse qualche nota. Nel codice C
            ci sono le opere filosofiche e teologiche elaborate tra gli anni
            1440–1450. C’è solo un testo di matematica:

            f. 68r–78v: De mathematica
            perfectione, prima versione; il testo è in gran parte
            cancellato.

            Cu = Codice della biblioteca dell’ospedale
            di San Nicola, cod. 219 (Bernkastel–Kues)[6].

            Il codice cartaceo, di 211 fogli, contiene le opere elaborate
            dopo il 1450, tra le quali due testi matematici:

            f. 51r–66v: De mathematicis
            complementis (testo più lungo)

            f. 194r–198v: De mathematica
            perfectione

            I testi matematici sono trascritti nitidamente da un’unica
            mano. Nel De mathematicis complementis ci
            sono poche correzioni molte note a margine e non c’è dubbio che
            l’autore sia Cusano. Le figure non mancano.

            E = Codice monacense latino della biblioteca
            della città bavarese, Clm 14213 (München, Bayerische
            Staatsbibliothek)[7].

            Il codice cartaceo, di 142 fogli (scritto nel XV secolo),
            proviene dal monastero di Sant’Emmerano. Vi sono molti scritti di
            Cusano, tra cui il De docta ignorantia, il
            De coniecturis e i seguenti scritti
            matematici:

            f. 96r–101r: De geometricis
            transmutationibus

            f. 101r–104v: De circuli
            quadratura

            f. 105r–108v: De mathematicis
            complementis (testo più breve)

            I testi matematici sono trascritti nitidamente da un’unica
            mano. Delle poche correzioni presenti è autore l’amanuense. Le
            iscrizioni sono in rosso e le figure sono disegnate con molta
            cura.

            Em = Codice caroloruense della biblioteca di
            Baden, E.M. 32 (Karlsruhe)[8].

            Il codice cartaceo, di 178 fogli (molti dei quali vuoti), è
            stato scritto alla fine del XV secolo e proviene dalla biblioteca
            di Johannes Stoeffler (1452–1531) e di Philipp Imsser (1500–1570),
            ed è stato ritrovato nel monastero Etten–Müster a Karlsruhe. I
            testi sono per la maggior parte astronomici. Di Cusano c’è
            solo:

            f. 5r–8v: Quadratura
            circuli; compresa la parte De sinibus et
            cordis (f. 8rv)

            F = Codice fiorentino, biblioteca nazionale
            centrale, Conv. Soppr. J. IX.16. (Firenze)[9].

            Codice cartaceo (della fine XVI secolo, visto che è inserito
            l’anno 1578), è composto di 453 fogli. Esso riporta una sola
            volta: Florentia San Marco 161. Contiene estratti e note da
            diverse opere per la maggior parte di matematica e fisica scritti
            in lingua greca, latina, italiana, tra cui:

            f. 191r–212v: Quadratura circuli ad
            mentem Cusani

            Il testo dei fogli 191r–212v, il cui autore non è nominato, offre la
            maggior parte della Quadratura circuli,
            quasi la metà dello scritto di Toscanelli dato a Cusano e una parte tratta dal Dialogus de circuli quadratura; infine ci sono
            passi scelti dalle note di Regiomontano riguardo a ciò che Cusano scrisse sulla quadratura e
            sulla rettificazione del cerchio e che nel 1533 Schöner stampò (vedi n). Il testo è di
            difficile lettura.

            Gr = Biblioteca dell’università di
            Groningen, Ms. 103 (Rijksuniversiteit)[10].

            Il codice cartaceo di 274 fogli contiene vari scritti in latino
            e in lingua batava; fu scritto da Walterus Enchusen (il quale nel 1530 trascrisse anche il Tractatus de Configurationibus Qualitatum et
            Motuum del 1355 di Oresme) probabilmente tra il 1520 e il 1540, nel monastero di
            Tabor, situato nella Frisia occidentale. Vi sono più di 40 testi
            sia interi sia estratti, specie di aritmetica, geometria,
            astronomia e astrologia. Gli scritti di Cusano sono:

            f. 153r–166r: De mathematicis
            complementis (testo più lungo)

            f. 166r–169r: De mathematica
            perfectione

            I testi sono scritti in maniera chiara e con molte
            abbreviazioni. Le figure non mancano. Gli scritti matematici di
            Cusano sembrano dipendere dall’edizione strasburghese.

            Hr = codice londinese, della biblioteca
            britannica, Harleianus 3169 (London)[11].

            Il codice si compone di 140 fogli, incollati su due parti;
            all’inizio il codice, scritto nel XV secolo, aveva entrambe le
            parti. La prima parte (f. 1r–125v) contiene scritti patristici e
            agiografici; l’altra parte, due opere di Cusano:

            f. 126r–138v: De mathematicis
            complementis (testo più lungo)

            f. 105r–108v: De theologicis
            complementis

            Nel secondo fascicolo i fogli sono ammassati e non sono in
            ordine. A quei tempi la serie dei fogli era: f. 126–130; 134–135;
            133; 138; 136–137; 131–132; 139–140. Il testo del De mathematicis complementis è trascritto da un
            solo amanuense in maniera chiara; l’autore delle poche correzioni
            che ci sono sembra sia l’amanuense stesso. Le figure sono
            presenti.

            M = Codice della biblioteca municipale
            metese, Ms. 355 (Metz)[12].

            Il codice cartaceo, di 266 fogli, scritto nel XV secolo, nel
            1763 era nell’abbazia di Santo Arnulfo. Nel settembre del 1944 il
            codice fu completamente bruciato, ma ad Heidelberg le immagini
            delle opere di Cusano sono protette dalla luce (non di tutte). Vi
            appartengono molti scritti di teologia e delle opere matematiche
            di Cusano solo il De mathematicis
            complementis (testo più breve) (f. 123v–132r).

            L’autore delle poche correzioni presenti nel De mathematicis complementis, scritto con
            chiarezza da un’unica mano, è lo stesso amanuense. Le figure sono
            presenti.

            Mn = codice monacense latino della
            biblioteca della città bavarese, Clm. 1862 (München, Bayerische
            Staatsbibliothek)[13].

            Il codice cartaceo, di 292 fogli, proviene dal monastero di San
            Quirino O. S. B. Tegernseense (vecchia indicazione: Teg 621).
            Molte parti estratte dalle opere di Cusano furono trascritte dal
            frate Sigismundus Schröttinger. La parte più consistente è quella
            teologica. Di Cusano troviamo:

            f. 261r – 270r: De mathematica
            perfectione[14]

            Il testo del De mathematicis perfectione
            è scritto con chiarezza da un’unica mano; le figure sono
            presenti.

            Na = Codice namurense della biblioteca del
            museo archeologico, Ms. 77 (Namur, Biblioteca della società
            archeologica)[15].

            Il codice cartaceo, di 232 fogli, scritto nel XV secolo,
            proviene dall’abbazia «de gardineto iuxta walcuriam» (=Abbaye du
            Jardinet, Walcourt) (ord. Cistercense); nel foglio Ir si legge (sec. XV/XVI): «questo libro
            appartiene al monastero del giardinetto della beata vergine Maria
            vicino a Walcourt». Di Cusano troviamo:

            f. 2r – 8v: De geometricis
            transmutationibus

            O = Codice enipontano della biblioteca
            universitaria (Innsbruck)[16].

            Il codice cartaceo, di 219 fogli, scritto nel XV secolo, è
            stato ritrovato nel monastero del monte di tutti i santi Schnals
            Aeni al ponte. Qui troviamo tra i vari scritti, il De anima di Cassiodoro (f. 167v–175r); il
            Dyalogus de genesi , trascritto nel 1447 a
            Lodi (f. 176r–183v); l’Epistolae ad
            Bohemos (f. 184r–196v); l’Epistola Enee
            Silvii ad Iohannem de Aich de curalium vanitatibus (f. 207r–219r). Delle
            opere matematiche di Cusano troviamo:

            f. 197r–204v: De geometricis
            transmutationibus

            Ob = Codice della biblioteca apostolica
            vaticana, Ottobon.lat. 1870 (Città del Vaticano).[17]

            Il codice cartaceo, di 176 fogli, prodotto nel XV secolo,
            contiene, tra gli altri scritti, il testo cusaniano:

            f. 166r–166v: Dialogus de circuli
            quadratura.

            R = Codice monacense latino della biblioteca
            della città bavarese, Clm 14908 (München, Bayerische
            Staatsbibliothek)[18].

            Il codice cartaceo, di 523 fogli, proviene dal Santo Emmeramo
            presso regina Castra, con la vecchia indicazione Em. R. 8. Il
            codice intero fu composto tra il 1455 e il 1464 da Fridericus
            Amann (morte ca.1465), che trascrisse tra il 1436 e il 1464
            molti testi di matematica, fisica, teologia, che sono passate alla
            memoria attraverso 12 codici, una volta del Santo Emmeramo[19]. Poichè Cusano nel 1451 frequentava regina Castra, è
            verosimile che abbia potuto incontrare Amann. Nel codice vi sono molti scritti specie di aritmetica
            e geometria. Tra queste ci sono le seguenti opere matematiche di
            Cusano:

            f. 407r – 423v vecchia numerazione = f. 426r – 442v nuova
            numerazione: De geometricis
            transmutationibus (testo scritto nel 1459)

            f. 423r – 432v vecchia numerazione = f. 442r – 451v nuova
            numerazione: De circuli quadratura (testo
            scritto nel 1459)

            f. 435r – 452v vecchia numerazione = f. 454r – 470v nuova
            numerazione De mathematicis complementis
            (testo più breve scritto nel 1459)

            Fridericus trascrisse le opere di Cusano nel 1459[20]. Gli opuscoli di matematica furono scritti rapidamente
            con molte abbreviazioni. L’originale del De
            mathematicis complementis e del De
            geometricis transmutationibus pare fosse il codice E dal Santo Emeramo.

            Nel De mathematicis complementis sono
            tracciate delle linee sotto le proposizioni; non mancano le
            figure, ma sono disegnate con poca attenzione.

            Rt = codice monacense latino della
            biblioteca della città bavarese, Clm 18570 (München, Bayerische
            Staatsbibliothek)[21].

            Il codice cartaceo, di 147 fogli, scritto intorno al 1453–1454
            nel monastero di San Quirino O.S.B. Di Tagersee (vecchia
            indicazione: teg. 570), contiene vari scritti teologici e di
            Cusano, tra gli altri scritti filosofici e teologici[22]: De mathematicis complementis
            (testo più breve, f. 52r – 62v).

            Il testo del De mathematicis
            complementis è scritto con chiarezza da un’unica mano; le
            poche correzioni presenti sono in gran parte errori di scrittura
            (refusi), che lo stesso amanuense corresse. Non mancano le figure,
            disegnate, tra l’altro, molto accuratamente.

            Sa = Codice oxoniense della biblioteca
            bodleiana Saviliana 55 (Oxford, biblioteca bodleiana)[23].

            Il codice cartaceo, di 110 fogli, composto intorno al 1451–1454
            ad Aquisgrana da più autori, in primis da Joanne Scoblant, nel
            1694 venne in possesso di Joannus Wallisius (1616–1703), che ne fece dono nel 1696 alla biblioteca
            di Oxford. Delle opere matematiche di Cusano vi è solo il De mathematicis complementis (testo più breve,
            trascritto nel 1454; f. 61r–68v)[24].

            Nel testo del De mathematicis
            complementis, scritto da un’unica mano, vi sono molti errori,
            la maggior parte dei quali fu corretta dallo stesso amanuense, che
            verosimilmente provvide anche a colmare le omissioni e i salti di
            trascrizione per omoioteleuto. Le figure non mancano.

            T = Codice monacense latino della biblioteca
            della città bavarese, Clm 18711 (München, Bayerische
            Staatsbibliothek)[25].

            Il codice cartaceo, di 268 fogli (fatti di membrana), scritto
            intorno al 1452 nel monastero di San Quirino O.S.B. Di Tagersee
            (vecchia indicazione: Teg. 711), contiene i seguenti scritti di
            matematici di Cusano:

            f. 234v–242r : De geometricis
            transmutationibus

            f. 242v–249v : De circuli
            quadratura[26]

            I testi matematici, scritti nitidamente, sono stati emendati da
            uno scarso amanuense del tempo.

            To = Codice toledino della biblioteca
            capitolare Ms. 19–26 (Toledo, biblioteca Capitolar)[27].

            Il codice, di 193 fogli, prodotto negli anni 1460–1470
            probabilmente in Italia, appartenne al cardinale Pier Leone di
            Spoleto (ca. 1445–1492), che riunì i codici che contenevano le
            opere di Cusano e in questo codice scrisse gran parte delle note a
            margine[28]. In seguito il codice passò tra i libri del cardinale
            Francesco Xaverio Zelado (1717–1801), romano di stirpe ispanica; di là, prima
            del 1808, fu portato a Toledo. Al codice appartengono 12 opere di
            Cusano di filosofia, teologia e matematica. Quelle di matematica
            sono:

            f. 169r–175r: De geometricis
            transmutationibus

            f. 175r–176r: De arithmeticis
            complementis (prima versione)

            f. 176r–187v: De mathematicis
            complementis (testo più lungo)

            f. 188r–191r: De mathematica
            perfectione (prima versione)

            f. 191v–192v: Dialogus de circuli
            quadratura

            Chi trascrisse il codice non aveva il corpus delle opere di Cusano: più che
            descrivere le opere, le riunì, accostandosi a rari codici; a
            testimonianza di ciò sta il fatto che soltanto il codice To tramandò le prime versioni (che sono per
            così dire abbozzi) del De arithmeticis
            complementis e del De mathematica
            perfectione. Non si fa menzione di Cusano nel codice To. Il testo degli opuscoli matematici, da
            quanto si può supporre, è stato scritto da un unico amanuense. Non
            sono state aggiunte note a margine; le correzioni sono poche e
            mancano tutte le figure. Le lettere iniziali nelle ultime due
            opere sono omesse.

            U = Codice vindobonense del convento
            dell’ordine dei predicatori 6/6 (Wien, Dominikanerkonvent)[29].

            Il codice cartaceo, di 317 fogli, scritto nel 1454, contiene
            solo opere di Cusano, tra cui le seguenti opere matematiche:

            f. 296r–308r: De geometricis
            transmutationibus

            f. 308v–317v: De circuli
            quadratura

            Y = Codice della biblioteca di New Haven,
            Yale Medical Library, The Historical Library. Ms 24[30].

            Il codice cartaceo, di 460 pagine, è stato composto nel XV
            secolo nel monastero mellicense; vecchie segnature; Melk 794, Melk
            367; Melk G. 27.

            Al codice appartengono molti opuscoli di astronomia e di
            matematica, scritti su Johannes de Gmunden (ca. 1380–1442), George
            Peurbach, Johannes Regiomontanus. La maggior parte degli scritti verte su come
            fabbricare e usare gli strumenti astronomici (l’astrolabio, il
            quadrante, l’orologio solare, il cilindro, l’organoptolemaico, il
            torqueto). Di Cusano c’è solo il Quadratura
            circuli, pp. 449–454.

            Il codice parigino della
            biblioteca nazionale, n.a.l. 1103[31].

            Il codice cartaceo, di 170 fogli, è stato composto nel XV–XVII
            secolo. In esso sono riuniti frammenti di diversi codici, tra essi
            c’è un foglio (f. 98rv), che contiene
            un frammento del De mathematicis
            complementis di Cusano. Il testo del frammento è lo stesso di
            quello contenuto nell’edizione a stampa p.
            Oltre al testo di Cusano, nel foglio è stata tramandata anche la
            parte del commento di Omnisantus; l’inizio del testo del commento è: «poi traccia una
            linea che sia perpendicolare a hp» (= p, f. LXVIIv, linea 1). In
            questo frammento ci sono le parole del De
            mathematicis complementis: «assegnare una curva circolare
            uguale a una retta data» (n.31,1) fino a «che sia ortogonale a hp»
            (n.35,5ss.).

          
          
            4.2 Edizioni a stampa

            a = edizione
            strasburghese (Argentoratum), stampata nel 1488 senza anno, né
            luogo, da Martin Flach (ca. 1440–ca. 1514). Poiché dipende dai
            codici C e Cu,
            contiene questi scritti matematici:

            fol. f 4v–h 8r: De mathematicis
            complementis

            fol. z 5v–A 3v: De mathematica
            perfectione

            m = edizione erroneamente definita milanese,
            in verità fu stampata nel 1502 presso Cortemaggiore nel castello
            del marchese Rolando Pallavicini (1393–1457) da Benedetto Dolcibello di Carpi
            (morte:1512). Contiene gli stessi scritti di a:

            f. 196r–217v: De mathematicis
            complementis

            f. 356v–362r: De mathematica
            perfectione

            p = edizione parigina, stampata nel 1514
            nella bottega del tipografo fiammingo Josse Bade van Assche (Jodicus Badius Ascensius, 1462–1535), a cura di
            Jacques Lefevre d’Etaple o Jacobus Faber Stapulensis (ca. 1455–ca. 1537). Consta di 3 volumi, nel volume II
            sono presenti gli scritti matematici:

            f. 33r–53v: De geometricis
            transmutationibus

            f. 54r–58v: De arithmeticis
            complementis

            f. 59r–92v: De mathematicis
            complementis (versione più lunga)

            f. 101v–114r: De mathematica
            perfectione

            Le prime due opere erano state donate a Faber Stapulensis dall’amico Jacobus Faber di Daventer (1473–ca. 1517);
            Omnisanctus Vasarius, religioso del convento di Livry, dell’ordine regolare
            dei canonici di Sant’Agostino, ampliò i testi con annotazioni, che
            sono state aggiunte o tutte alla fine di ciascun testo o in spazi
            diversi.

            n = edizione norimberghese, che è
            un’appendice del De triangulis omnimodis libri
            quinque di Regiomontanus, edita nel 1533 da Schöner[32]. In appendice si trovano i seguenti scritti matematici e
            il responso di Toscanelli dato a Cusano:

            p. 5–9: Quadratura circuli

            p. 10–12: Dialogus de circuli
            quadratura

            p. 13–14: Magister Paulus ad Niccolaum
            Cusanum Cardinalem

            p. 14–15: Declaratio rectilineationis
            curvae

            p. 16–21: De una recti curvique
            mensura

            b = edizione basilense, stampata nel 1565 da
            Henricus Petrus (1508–1579), presso la sua Officina Henricpetrina.
            Questa edizione segue sostanzialmente le edizioni p e n. Queste le opere
            matematiche che vi ineriscono:

            p. 939–991: De geometricis
            transmutationibus

            p. 991–1003: De arithmeticis
            complementis

            p. 1004–1090: De mathematicis
            complementis (testo più lungo)

            p. 1091–1095: Quadratura circuli

            p. 1095–1098: Dialogus de circuli
            quadratura

            p. 1099–1100: Magister Paulus ad Niccolaum
            Cusanum Cardinalem

            p. 1100–1101: Declaratio rectilineationis
            curvae

            p. 1101–1106: De una recti curvique
            mensura

            1120–1154: De mathematica
            perfectione

            Nei quattro scritti presi da p non
            mancano le annotazioni di Omnisanctus, che sono aggiunte in p.

          
          
            4.3 Genesi, datazione e successione cronologica dei singoli
            scritti matematici

            
              4.3.1 De geometricis
              transmutationibus

              Il De geometricis transmutationibus è
              lo scritto matematico più antico che noi conosciamo di Cusano.
              Sembra sia stato terminato il 25 settembre 1445 e inviato a
              Toscanelli (come si evince dalla fine di O). Il trattato è stato tramandato in 7
              codici (E, Na, O, R, T, To, U); manca in
              a e m, poiché
              Cusano non volle che il trattato fosse ripreso nei codici C/Cu; è presente in p
              e b. Per l’edizione p Jacobus Faber Stapulensis (Jacque Lefèvre
              d’Étaples) utilizzò il manoscritto di Daventer di difficile
              lettura, che andò disperso. Omnisanctus Vasarius (coeditore con Jacobus Faber Stapulensis dei lavori di Cusano pubblicati a Parigi nel 1514)
              ampliò il manoscritto con varie annotazioni, che sono riportate
              in p[33].

              L’ipotesi ammessa da Franz Anton Scharpff (1809–1879), da
              Paul Schanz (1841–1905) e da Edmond Vansteenberghe[34] era che questo trattato fosse stato composto nel
              luglio 1450 e concluso a Rieti. Contrario a questa data,
              tuttavia, Joseph Hofmann, e ancor prima Johann Uebinger[35], sottolinea che Cusano, nell’introduzione del De circuli quadratura del luglio 1450, parla
              di un precedente lavoro matematico. Cusano stesso presenta il
              testo sulla quadratura del cerchio come una spiegazione più
              precisa della prima premessa del De
              geometricis transmutationibus, alla quale allude
              direttamente, pur senza nominare mai il testo. Anche nel De arithmeticis complementis si fa
              riferimento al De geometricis
              transmutationibus concluso poco prima. Il De geometricis transmutationibus può essere
              collocato tra il De filiatione dei del
              luglio 1445 e il De dato Patris luminum dell’inverno 1445–1446. Il testo
              completo di questa prima opera matematica è stato tramandato in
              Na, O, T, U. E è
              pieno di errori; la maggior parte di R
              concorda con E; il testo di To è simile a Na, ma
              in molti passi ci sono errori. La sintassi latina è imprecisa,
              il testo discorda in diversi punti nelle versioni manoscritte,
              il che lo rende oscuro e di difficile lettura.

            
            
              4.3.2 De arithmeticis complemementis (forma
              prior)

              Cusano mandò quest’opuscolo a Toscanelli con l’intento di confermare con argomenti aritmetici
              le dimostrazioni geometriche contenute nel De
              geometricis transmutationibus.

              La forma prior del De arithmeticis complementis è presente solo
              in To e presenta molti errori. È chiaro
              che chi lo trascrisse non capì in alcun modo il contenuto: non
              intese il significato delle frazioni, per cui pensò di omettere
              tutti i passi con gli esempi in cui erano presenti le frazioni,
              lasciandoli vuoti. Il testo è ricostruito sul codice To, che tuttavia, essendo disseminato di
              errori, risulta di difficile comprensione[36].

            
            
              4.3.3 De arithmeticis complementis

              L’ultima versione del De arithmeticis
              complementis, qui tradotta, differisce molto da quella
              iniziale. Il testo è indirizzato a Toscanelli: è probabile che questi avesse indicato a Cusano
              un’argomentazione scorretta nella prima versione, e per questo
              Cusano cercò di emendare il primo testo con quest’altro. Il De arithmeticis complementis, che è la
              prosecuzione diretta del De geometricis
              transmutationibus, sembra sia stato scritto non molto più
              tardi di quest’ultimi, ossia verso la fine dell’autunno del
              1450, durante il periodo di Coblenza[37]. L’ultima versione del De
              arithmeticis complementis è stata tramandata soltanto in
              p e b, che
              contengono il testo cusaniano, di difficile lettura, e le
              annotazioni di Omnisanctus Vasarius.

            
            
              4.3.4 De circuli quadratura

              Questo testo è stato scoperto sotto forma di manoscritto da
              Raymund Klibansky[38] e porta la data 12 Luglio 1450[39]. L’edizione critica di Menso Folkers fa riferimento a
              T[40], sebbene si trovi in altri tre codici (E,R,U)[41]. La seconda parte del trattato, che assume toni
              simbolici e mistici, si avvicina molto alle argomentazioni
              contenuti nel De docta ignorantia. Una
              volta si pensava che non fosse altro che l’opera Quadratura circuli, poiché si trovava in n. Adelaida Dorothea Riemann e Carolus
              Bornmann, pubblicando il De theologicis
              complementis[42] aggiunsero in appendice l’ultima parte del De circuli quadratura (28–39). In linea con
              l’edizione critica, la traduzione si base fondamentalmente sul
              codice T.

            
            
              4.3.5 Quadratura circuli

              L’opuscolo, di cui non è stato stabilito né l’anno, né il
              giorno della sua composizione, si riteneva negli anni precedenti
              che fosse stato elaborato nel Dicembre 1450, ma Fritz Nagel
              dimostrò che verosimilmente questo testo era stato scritto da
              Cusano nel mese di Luglio o Agosto del 1453 a Bressanone[43]. L’ipotesi di uno slittamento della data di
              composizione della Quadratura circuli fa
              leva sulla somiglianza testuale e contenutistica che c’è tra la
              Quadratura circuli e il
              De mathematicis complementis (del 1453). L’opuscolo è stato
              tramandato in Em, Y e in n. Nel codice Em ci
              sono molte glosse tra le righe e a margine, soprattutto nel
              primo foglio; nel codice Y si trovano due
              glosse a margine. Il testo del codice Y è
              più chiaro del codice Em, ma mancano le
              figure. Entrambi i codici e l’edizione a stampa n dipendono da un unico esemplare[44]. Si trovano diversi passi estratti dalla Quadratura circuli nel libricino del codice
              F intitolato Quadratura
              circuli ad mentem Cusani, di autore ignoto, che sembra sia
              stato utilizzato nell’esemplare andato perduto.

            
            
              4.3.6 De mathematicis complementis

              Il De mathematicis complementis è il
              testo più lungo e il più importante tra gli scritti matematici
              di Cusano; è dedicato al papa Niccolò V. Ci è pervenuto in due versione: una, più breve, di
              un libro, probabilmente iniziata nel settembre 1453 a Bressanone
              e conclusa a Bronzolo; l’altra, più lunga, compiuta a Bressanone
              in VIII Kal. di Dicembre (24.11). Con la forma
              prima Cusano volle porre davanti agli occhi dei lettori non
              troppo esperti di matematica le novità conseguite nella Quadratura circuli e nel De
              theologicis complementis. Toscanelli, a cui era stata inviata la prima versione, confutò
              le affermazioni di Cusano, e questi, mosso dalla critica
              dell’amico, aggiunse un secondo libro. Dopo poco Cusano
              revisionò l’intera opera, cambiando qualche particolare. Nella
              seconda versione e nelle diverse edizioni a stampa si ritrovano
              molti degli argomenti presenti nel codice Cu.

              La prima versione si trova in sei codici (Br, E, M, R, Rt, Sa); nel codice Sa sono aggiunti anno e giorno: VI Kal.
              Martias (24.2) del 1454; dunque il codice Sa è successivo alla seconda versione.
              Quest’ultima si trova in sette codici (A, Bb,
              Bl, Cu, Gr, Hr, To), e in quattro edizioni a stampa (a, m, p, b); p e b – che dipende da p –
              sono ampliati da Omnisanctus.

              Cusano aggiunse alla versione più breve del De mathematicis complementis il De theologicis complementis. Tutti i codici,
              che contengono il De theologicis
              complementis (eccetto il codice R),
              contengono anche la versione più breve del De
              mathematicis complementis[45]. I codici contenenti la prima versione (Br, E, M, Rt) sono perfettamente descritti. È
              stato tramandato il testo integrale in Br
              e Rt. R sembra
              dipendere da E ed è scritto in modo non
              accurato. In Sa si trovano molte
              imperfezioni.

              Tra i codici contenenti la seconda versione, Cu occupa un posto di rilievo, poiché è
              esaminato e ampliato da Cusano con numerose note a margine. Il
              testo del codice A e del codice Cu sono i più simili al testo di Cu. Ottimo è anche il testo del codice Hr; la fine dell’altro libro (dopo n. 82,2)
              manca di fogli andati perduti. Il testo del codice To è scritto da un ignaro di matematica, che
              fece molto errori, soprattutto nello scrivere le lettere delle
              figure. Il testo del codice Bl è ottimo;
              in esso sono contenuti il libro primo e parte del libro secondo
              (n. 61–67, n. 71–90, n. 92–98).

              L’edizione a stampa a contiene
              l’intero testo dei due libri; m dipende
              da a, ma è inficiato da molti errori. Il
              codice Gr è una copia del libro a, ed entrambi si trovano in p, che dipende b.

              È qui presentata la traduzione del testo della seconda
              versione e si rifà al codice Cu.

            
            
              4.3.7 Declaratio rectilineationis
              curvae

              Con questo opuscolo inviato a Peurbach Cusano cerca di spiegare la rettificazione del
              cerchio, di cui parla nel De mathematicis
              complementis. La Declaratio è
              pervenuta fino a noi solo tramite n e b. Non sappiamo quando sia stato scritto.

            
            
              4.3.8 De una recti curvique
              mensura

              Anche di questo opuscolo non sappiamo la data di
              composizione. È stato tramandato in n e
              b e nel codice Bb,
              il cui testo è lo stesso di quello contenuto in n e b. Tuttavia,
              poiché nelle tre tesi del testo si fa riferimento al contenuto
              del De mathematicis complementis, è molto
              probabile che esso sia stato composto subito dopo il testo più
              lungo[46].

            
            
              4.3.9 Dialogus de circuli
              quadratura

              Il dialogo, di cui si parla nel titolo, è quello tra Cusano e
              Toscanelli: è molto probabile che la prima metà sia stata
              portata a termine nel 1457, prima della pubblicazione del De caesarea circuli quadratura. Si trova in
              due codici (Ob e To) e nelle edizioni n
              e b; un breve frammento si trova nel
              trattato Quadratura circuli ad mentem
              Cusani, tramandato in f. Nel primo
              foglio di Ob ci sono molte lacune e
              diversi errori, che sono stati corretti successivamente. To è identico al codice Ob.

            
            
              4.3.10 De caesarea circuli
              quadratura

              Con questo opuscolo, indirizzato all’imperatore Federico IV,
              Cusano rispose alle obiezioni espresse da Toscanelli al De mathematicis
              complementis; è certo che Cusano compose le prime righe di
              quest’opuscolo il 6.8.1457, nella città di Andrax. Poiché non si
              trova in alcun codice se non in A,
              trovato da Klibansky nel 1929, si ritenne che non fosse di Cusano. Questo testo,
              insieme all’Aurea propositio in
              mathematicis, non fu stampato nel XV e XVI secolo, e fu
              edita solo molto tempo dopo da Daniela Mazzuconi[47]. La prima parte è scritta dal segretario di Cusano,
              Petrus Erckelenz. La seconda da Cusano stesso. L’insieme risulta
              un lavoro incompleto: le ultime pagine mancano e non sembra sia
              stato rivisto né inviato al suo destinatario.

            
            
              4.3.11 De mathematica perfectione (forma
              prior)

              Il testo, presente alla fine di C,
              all’inizio era stato cancellato, probabilmente con una pietra
              pomice, ma oggi può essere in parte letto[48]. Nel 1983 Klaus Reinhardt reperì il testo nel codice
              To: è probabile che Cusano stesso abbia
              ordinato di cancellare il testo in C.
              Marco Böhlandt ha formulato alcune ipotesi per spiegare i motivi
              di tale eliminazione[49]. C’è un’indubbia affinità di contenuto tra questo
              testo e il De beryllo, un’opera che
              Cusano produsse per i monaci supplici di Tegernsee. È probabile
              che le due opere, il De mathematica
              perfectione e il De beryllo, siano
              state prodotte nel medesimo periodo ed è altrettanto probabile
              che Cusano decise di non trascrivere nel testo definitivo del
              De mathematica perfectione le esposizioni
              generali sulla filosofia e sulla teologia contenute nella prima
              versione in quanto, essendo simili a quanto esposto nel De beryllo, risultavano un’inutile
              ripetizione; per questo motivo è verosimile che Cusano ordinò
              che il primo testo fosse cancellato. Hofmann pubblicò le parti
              del primo testo, che si trovano in C,
              ampliandole con diversi commenti; trascrisse il testo di To e Reinhardt lo pubblicò[50]. Menso Folkerts ha pubblicato solo il testo dal codice
              To, includendo le parti del codice C che si possono distinguere e aggiungendo le
              figure, che mancano completamente in To.
              Sulla base di C e le integrazioni da
              parte di Reinhardt è stata ricostruita integralmente la forma prior del De
              mathematica perfectione, oggi disponibile in Cusanus 2010h, 183–199.

            
            
              4.3.12 De mathematica perfectione

              Cusano portò a termine la versione definitiva del testo
              nell’autunno del 1458 a Roma, e la spedì al cardinale spagnolo
              di S. Crisogono, Don Antonio Cerdá y Lloscos (1390–1459). A margine di Cu
              Cusano stesso annotò che riteneva il De
              mathematica perfectione il trattato migliore tra i suoi
              scritti matematici, «che... emerge su tutti». Il testo, che egli
              stesso ordinò di includere nel codice Cu,
              è stato tramandato anche in altri codici (Bl,
              Gr, Mn) e passato in a, m, p e b.
              Omnisanctus aggiunse al testo numerosi commenti, che sono in p e in b.

            
            
              4.3.13 Aurea propositio in
              mathematicis

              È l’ultimo opuscolo di matematica che conosciamo, scritto da
              Cusano a Roma l’8 Agosto 1459 durante la sua legazione nella
              città.[51] È stato tramandato in A,
              trovato da Raymund Klibansky, ed edito nel 1980[52].

            
            
              4.3.14 Appendix: Magister Paulus ad Nicolaum
              Cusanum cardinalem

              L’autore dello scritto, con cui si confuta una proposizione
              fondamentale (la dodicesima) del De
              mathematicis complementis, sebbene non sia indicato, è
              sicuramente Toscanelli, come emerge da due note a margine di Cu scritte da Cusano stesso. Verosimilmente
              Toscanelli concluse lo scritto nell’inverno 1453–1454.
              Dall’ultima frase del testo si evince che il testo doveva essere
              tramandato a Peurbach, e da questi a Regiomontano. Nel 1533 Schöner pubblicò lo scritto (nell’edizione n) e a noi è pervenuto per mezzo di b, che dipende da n.
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              [12] Il codice è descritto in Faider 1879, V, 149ss.. Cfr. anche Hofmann e Hofmann 1980, XLVII–L. Il codice contiene anche il De
                pace fidei (f. 101r–123r); il De
                theologicis complementis (f. 133r–147v) e
                le Epistulae ad Bohemos (f. 148r–167r).

              [13] Il codice è descritto in Faider 1876, IV, III, 4, 190. Cfr. anche Hofmann e Hofmann 1980, XLVII–L.

              [14] Nel codice vi è anche il De beryllo
                (f. 270v–292v).

              [15] Il codice è descritto in Faider 1934, I, 167ss. Cfr. anche Hofmann e Hofmann 1980, XLVII–L.

              [16] Il codice è descritto in Kristeller 1963–1992, II, 419. Cfr. anche Hofmann e Hofmann 1980, XLVI–XLIX.

              [17] Il codice è descritto in Daly e Ermatinger 1964, 3–17, e Daly e Ermatinger 1965, 12–29; spec. 19ss.. Cfr. anche Kristeller 1963–1992, II, 419; Hofmann e Hofmann 1980, XLVII–L. Sull’importanza del codice delle opere di Cusano,
                cfr. Haubst 1952a, 16–18. In questo codice si trovano anche due opere di
                Archimede: il De quadratura circuli
                (f. 151v–156r) e il De mensura
                circuli (f. 156r–157v). Entrambi sono editi in Clagett 1964–1984a, I, XXXIX; 91–135.

              [18] Il codice è descritto in Faider 1876, IV, 250 e in Vogel 1954, 11–19. Cfr. anche Bischoff 1967, II–128 e Hofmann e Hofmann 1980, XLVIss.–L.

              [19] Cfr. Wunderle 1995, I, XIVss..

              [20] Tra queste anche il De docta
                ignorantia (libro I, cap. 13–15) f. 453r–455v
                (vecchia numerazione) e alcuni estratti del libro I del De coniecturis, (f. 456r–464v
                vecchia numerazione).

              [21] Il codice è descritto in: Faider 1876, IV, 182. Cfr. anche Hofmann e Hofmann 1980, XLVI–L.

              [22] Tra questi: f. Ir–26v: De visione
                dei; f. 28r–51v: De pace
                fidei; f. 65r–77v: De theologicis
                complementis; f. 78r–94v: Epistulae ad
                Bohemos.

              [23] Il codice è descritto in Madan e Craster 1905, I, 185ss. (n. 26123). Cfr. anche Hofmann e Hofmann 1980, XLVI–L.

              [24] In questo codice si trovano: il De
                mente (f. 1r–25r); il De staticis
                experimentis (trascritto nel 1451, f. 26r–34r); le
                Epistulae ad Bohemos (f. 35ra–46rb);
                il De theologicis complementis
                (trascritto nel 1454, f. 71ra–83rb);
                il De pace fidei (trascritto nel 1454;
                f. 85ra–110rb). Tra il De
                mathematicis complementis e il De
                theologicis complementis si trova il Quadratra circuli di Campano (ed. Clagett 1964–1984a, I, 606).

              [25] Il codice è descritto in Faider 1876, IV, 200ss. Cfr. anche Hofmann e Hofmann 1980, XLVIss–L.

              [26] Gli altri cusaniani presenti nel codici sono: il De quaerendo deum (f. 1r–9r); il
                De docta ignorantia (f. 13r–71r);
                l’Apologia doctae ignorantiae (f. 73r–88v); il
                De mente (f. 92r–118v);
                il De staticis experimentis (f. 119r–127r);
                il De sapientia (f. 128r–144r);
                un Sermo e una Epistula (f. 144v–162r);
                il De coniecturis (f. 162r–219r);
                De filiatione dei (f. 222r–228r),
                il De dato patris luminum (f. 228v–234r);
                le Epistulae ad Bohemos (f. 250v–268v).

              [27] Del codice ha ampliamente parlato Reinhardt 2005. Ha descritto brevemente il codice Kristeller 1963–1992, IV, 636. Cfr. inoltre Rotzoll 2002, 253–287, spec. 266.

              [28] Cfr. Schnarr 2002, 187–213. Nel 1489, probabilmente al servizio del cardinale
                Marco Barbo (1420–1491), Leone incontrò Luca Pacioli, che nella sua Summa de
                arithmetica ricorda come Leone gli avesse mostrato il rarissimo De circuli quadratura di Cusano, di cui
                Leone possedeva e aveva studiato diverse opere.
                Leone fu il solo degli studiosi italiani del Quattrocento
                – con l’unica eccezione di Ermolao Barbaro (1454–1493) – a possedere, studiare e fittamente
                postillare sia un certo numero di opere di Cusano, specie
                quelle “irenistiche”, quali il De visione
                dei o il De pace fidei, sia le
                opere di Lullo.

              [29] Il codice è descritto in Czeike 1952, 7 e Kristeller 1963–1992, III, 53. Cfr. anche Hofmann e Hofmann 1980, XLVI e LI.

              [30] Del codice ha parlato ampliamente Senger 1972, 14ss. Il codice è descritto in Faider 1889, 535–537; Bond e Faye 1962, 57ss; Kristeller 1963–1992, III, 30 e Kristeller 1963–1992, V, 293. Cfr. anche Hofmann e Hofmann 1980, XLVI–L.

              [31] Sul codice, cfr. Omont 1915, 21ss e Kristeller 1963–1992, III, 273.

              [32] Cfr. Hofmann 1967.

              [33] Non essendo utili alla comprensione dell’opuscolo, le
                  annotazioni di Omnisanctus, in conformità con l’edizione critica, non sono
                  state qui tradotte.

                [34] Cfr. Hofmann e Hofmann 1980, nota 1, 189.

                [35] Cfr. Uebinger 1895, 414–422.

                [36] Cfr. Folkerts 2012, 315–333.

                [37] Cfr. Hofmann e Hofmann 1980, 198.

                [38] Cfr. Liebmann 1929, 261.

                [39] Sulla datazione cfr. Uebinger 1895, 403–413.

                [40] Cusanus 2010a, XXIX–XXX.

                [41] Il codice T è un ottimo testo,
                  sebbene vi siano parecchie omissioni (la maggior parte per
                  omoioteleuta), che però sono colmate a margine del testo. Il
                  codice E è molto simile a T. U non ha le imperfezioni dei codici E
                  e T, ma è danneggiata da errori
                  propri. Il codice R è scritto con
                  negligenza; l’amanuense corresse immediatamente molti
                  errori. Nel codice R dopo le parole:
                  «nella tesi così dichiarata» (24–25) il discorso si
                  interrompe.

                [42] Cfr. Cusanus 1994.

                [43] Cfr. Nagel 1984, 70–73.

                [44] Cfr. Senger 1972, 15–17.

                [45] Heide D. Riemann e Karl Bormann hanno ben esposto questa
                  circostanza in Cusanus 1994, XX–XXII.

                [46] Cfr. Hofmann e Hofmann 1980, nota 8, 239.

                [47] Cfr. Mazzuconi 1980, 49–72.

                [48] Cfr. Hofmann e Haubst 1973, 13–57; Nicolle 1998, nota 21, 121.

                [49] Cfr. Böhlandt 2002, 194–109; Böhlandt 2005, 3–40.

                [50] Cfr. Reinhardt 1986, 96–141, spec. 134–141.

                [51] Cfr. Meuthen 1989.

                [52] Mazzuconi 1980, 49–72. Cfr. Nicolle 2010.

                
  5. Criteri di traduzione

          Gli scritti matematici sono riportati in ordine cronologico nel
          volume XX dell’edizione critica dell’Opera
          omnia di Cusano a cura di Menso Folkerts (Cusanus 2010a) e qui riprodotti integralmente per gentile concessione
          del curatore. In Appendice vi è un testo intitolato Magister Paulus ad Nicolaum Cusanum cardinalem,
          in cui Paolo Toscanelli esamina con sottile acume l’opera di Cusano De mathematicis complementis. È su questa
          edizione critica latina che si basa la traduzione degli undici
          scritti cusaniani qui presentati, escluse le formae priores del De
          arithmeticis complementis e del De
          mathematica perfectione. Della forma
          prior del De mathematica perfectione
          sono stati tradotti nell’ultima nota della traduzione de La perfezione matematica tre lunghi passaggi in
          cui emergono le differenze più significative e interessanti rispetto
          alla versione definitiva. La traduzione del De
          circuli quadratura, del De mathematicis
          complementis e del De mathematica
          perfectione è stata pubblicata nell’edizione a cura di Enrico
          Peroli[1] e qui riproposta senza sostanziali cambiamenti.

          Per la traduzione si è tenendo conto delle due uniche traduzioni
          esistenti: quella tedesca di Josepha Ehrenfried Hofmann (Hofmann e Hofmann 1980) e quella francese di Jean Marie Nicolle (Nicolle 2007). Le introduzioni e i commenti di Joseph Ehrenfrien
          Hofmann ai Mathematische Schriften spiegano
          accuratamente le questioni matematiche che Cusano tratta nei suoi
          scritti (escluse due opere, che non erano note all’illustre
          studioso). Anche gli studi e la traduzione parziale degli scritti
          matematici portati avanti alla fine dell’Ottocento da Johannes
          Uebingen (Uebinger 1895; Uebinger 1896 e 1897) sono stati preziosi contributi.

          In questa traduzione si è preferito rispettare lo spirito dei
          testi, per quanto bizzarro possa apparire, cercando tuttavia di
          rendere leggibili i passaggi e i procedimenti in essi contenuti.

          Per questo motivo la traduzione, pur non essendo strettamente
          letterale e privilegiando, per quanto possibile, il criterio di
          chiarezza espositiva, ha avuto cura di conservare il significato che
          avevano all’epoca i termini e le espressioni matematiche, tranne i
          casi, segnalati in nota, in cui, per rendere il testo scorrevole, è
          stato necessario attualizzare. La punteggiatura è stata riadattata
          secondo l’uso odierno.

        Note a piè pagina
[1] Peroli 2017, 1997–2161.

            
  6. Glossario

          Sono qui riportati i termini utilizzati più frequentemente da
          Cusano negli scritti matematici. Va sottolineato che il cardinale
          utilizza spesso termini diversi per significare la stessa cosa,
          ossia tali per cui la differenza di significato è minima.
          Complessivamente, egli preferisce le denominazioni greche a quelle
          latine.

          Da un punto di vista terminologico è interessante sottolineare
          che Cusano rinnova i termini matematici di quel tempo, come costa, potentia, sagitta, ma non utilizza altri,
          benché fossero usati a quel tempo, come hypotenusa
          e cathetus, con i quali si designano i lati del triangolo
          rettangolo; al loro posto ricorre a prima linea,
          secunda linea, tertia linea. Ci sono vocaboli che hanno
          significati diversi rispetto all’uso che si trova negli scritti
          matematici del suo tempo, come lunula, rhombus,
          sector; e talvolta lo stesso termine ha molteplici e diversi
          significati, come columna, longitudo, medium,
          portio, superficies, commensurabilis. È inoltre evidente, nella
          terminologia utilizzata da Cusano, l’influsso della tradizione
          araba: il termine seno, per esempio, è inteso da Cusano nel senso di
          “semicorda dell’arco doppio”, secondo un’invenzione indiana
          tramandata dagli arabi all’Occidente medievale.

          
          
            	Abscissio

            	sezione


            	Additio

            	addizione, somma; a secondo del contesto, il termine indica
            l’operazione o il risultato dell’operazione


            	Aequalis

            	uguale. Cusano utilizza questo termine per indicare
            uguaglianze di lunghezze, di superfici o di volumi


            	Aequatrix

            	equatrice; Cfr. De mathematicis
            complementis, Fig. 31; si tratta di una linea parallela alla
            tangente e perpendicolare al raggio, tale che essa taglia due
            settori uguali, l’uno nel cerchio sotto il punto di tangenza,
            l’altro fuori dal cerchio sotto l’equatrice


            	Aequidistans

            	equidistante, tradotto nella maggior parte dei casi con
            “parallelo”


            	Area

            	area, intesa come superficie delle figure piane


            	Altitudo

            	altezza, spesso profondità


            	Angulus

            	angolo


            	Arcus

            	arco


            	Ars

            	arte, intesa come metodo, sapere


            	Capacitas

            	estensione; ampiezza, capacità, ma anche superficie, intesa
            dal punto di vista della grandezza


            	Centrum

            	centro


            	Chorda

            	corda


            	Circulus

            	cerchio


            	Circumferentia

            	circonferenza


            	Columna quadrangula

            	parallelepipedo rettangolo


            	Columna rotunda

            	cilindro


            	commensurare/commensurabilis

            	termine equivoco, che designa un’uguaglianza di misura,
            un’uguaglianza di area (equivalenza) o anche una semplice
            proporzionalità


            	Comparates

            	corde in proporzione, ossia quelle corde – di cui una è
            tracciata come minore, l’altra come maggiore –, poste in modo che
            distino dalla corda di mezzo una lunghezza pari all’arco compreso
            tra le corde, Cfr. De mathematicis
            complementis, § 94, Fig. 40


            	Contingens

            	tangente


            	Corpus

            	solido


            	Costa

            	lato


            	Curvitas

            	curvatura; termine ambiguo che designa tanto l’inflessione
            di una curva, quanto l’essenza dell’essere curvo
            (curvilineo)


            	Diameter

            	diametro, ma Cusano utilizza diameter
            anche per definire la diagonale di un quadrilatero


            	Ducere

            	condurre, moltiplicare


            	Ductio

            	condotto, operazione. Il termine tecnico ductio significa sia il movimento di
            costruzione geometrica sia l’operazione aritmetica della
            moltiplicazione


            	Excedere

            	eccedere, superare


            	Excessus

            	eccesso, ossia la quantità della quale una grandezza (linea,
            perimetro o superficie) supera un’altra


            	Figura

            	figura, che indica non solamente la rappresentazione
            disegnata nel testo, ma anche l’oggetto geometrico costruito che
            si intende studiare.


            	Figura rectilinea

            	figura delimitata da linee dritte; a volte sta ad indicare
            anche la superficie


            	Figura poligona

            	poligono


            	Figura circularis

            	cerchio


            	Figura quadrangularis

            	figura con quattro lati, riferita tanto al quadrato quanto
            al rettangolo e al parallelogramma.


            	Freccia

            	freccia, retta perpendicolare al centro della corda
            dell’arco


            	Gradus

            	grado (ampiezza di un angolo)


            	Habitudo

            	rapporto


            	Helica

            	spirale


            	Hexagonus

            	esagono


            	Isoperimetris

            	isoperimetrico


            	Isopleurus

            	regolare


            	Latus

            	lato


            	Linea

            	linea; più generalmente, segmento di retta


            	Linea recta

            	linea retta, intesa come linea dritta, non curva


            	Linea prima

            	prima linea: linea tracciata dal centro verso la metà di un
            lato di un poligono, altrimenti detta il semidiametro del cerchio
            inscritto al poligono


            	Linea secunda

            	seconda linea: linea tracciata dal centro a uno degli angoli
            del poligono, altrimenti detta il semidiametro del cerchio
            circoscritto al poligono


            	Linea complementi

            	linea di complemento (Cfr. De mathematicis
            complementis, §85). Una linea di complemento è una linea del
            poligono inscritto che, aggiunta al semilato del poligono
            circoscritto corrispondente, forma il semilato del poligono di
            medesima superficie. Questa espressione sembra non avere alcun
            rapporto con il concetto di angoli complementari in un
            triangolo


            	Longitudo

            	altezza


            	Medietas

            	mezzo, media, metà


            	Medietas duplae

            	metà della doppia proporzione (cfr. Quadratura circuli, § 9, nota 25 etc.)


            	Medium

            	mezzo, ma anche medio


            	Multiangulus

            	multiangolo, poligono


            	Multiplicatio

            	moltiplicazione


            	Orthogonus

            	ortogonale, ad angolo retto


            	Pars aliquota

            	parte aliquota


            	Pentagonus

            	pentagono


            	Perimeter

            	perimetro inteso come linea di contorno; il termine perimeter è più frequente rispetto a peripheria


            	Peripheria

            	perimetro, circonferenza


            	Polygonum

            	poligono; polygonum è molto più
            utilizzato rispetto a multiangulus


            	Portio

            	parte, porzione di linea retta (segmento), porzione di linea
            curva (principalmente archi) o porzioni di superficie (settori
            circolari o segmenti di cerchio)


            	Potentia

            	quadrato (nel senso di seconda potenza)


            	Proportio

            	proporzione, rapporto, proporzionalità


            	Punctus

            	punto


            	Quadrangulus

            	rettangolo


            	Quadrangulus rectilineus

            	parallelogramma


            	Quadrans

            	quadrante (quarto di cerchio)


            	Quantitas

            	quantità, grandezza, lunghezza (riferito a una linea)


            	Rectilineus

            	rettilineo


            	Rectus

            	retto (per una linea o per un angolo)


            	Rhombus

            	rombo


            	Sagitta

            	freccia, cioè la frazione della perpendicolare alla metà di
            un arco compreso fra la corda e la circonferenza del cerchio.
            Cusano la definisce anche come la differenza fra la seconda e la
            prima linea


            	Sector

            	sia settore, cioè la porzione di superficie di un cerchio
            compresa fra due raggi e un arco di circonferenza, sia
            raggio


            	Sinus

            	seno; termine non ben definito. Cusano lo utilizza come
            sinonimo di curva o di arco, non nel senso attuale del rapporto
            fra il lato opposto all’angolo e l’ipotenusa


            	Sphaerea

            	sfera


            	Superficies

            	superficie in generale


            	Terminus

            	termine, limite, estremità (di un segmento)


            	Tetragonus

            	quadrilatero; lavorando sui poligoni regolari, Cusano
            utilizza più frequentemente tetragonus
            (quadrilatero) che quadratus per intendere
            il quadrato. Per rendere più scorrevole il testo, si è tradotto
            con quadrato


            	Triangulus

            	triangolo


            	Trigonus

            	triangolo; trigonus è utilizzato più
            frequentemente rispetto a triangulus


          

        
  Versione originale latina

  De geometricis transmutationibus

          [image: link to parallel text] 1. Paulo magistri Dominici, physico Fiorentino, optimo atque
          doctissimo viro, liber de geometricis transmutationibus Nicolaus de
          Cusa cardinalis.

          [image: link to parallel text] 2. Etsi veteres magno ingenio praediti sedula
          indagatione conati sunt milita tunc abscondita sibi et posteris nota
          facere perfecerintque utiliter in plerisque maximis atque optimis
          artibus, non tamen omne desideratum, in quibusque altioribus
          theoriis attigerunt, praeordinante hoc universorum optimo provisore,
          ut in nobis vis illa divinae intelligentiae non torpeat, sed
          admiratione vehementiori ad ipsa latentia et scitu possibilia
          feratur. Ardentius quidem in obscuri penetrationem movemur, ut
          quietius de mentis vigorositate delectemur. Inter ea autem, quae
          geometricis speculationibus insudantibus hucusque impedimento fuere,
          unum ab omnibus, quorum vires ingenii libri, qui ad nostram notitiam
          deducti sunt, curiosius observant, incognitum remansit, de recti
          scilicet atque curvi aequalitate aut in invicem transmutatione
          statuenda, ita ut non minimis, immo paene omnibus huic inquisitioni
          deditis post immensos labores visum sit viam ad huius notitiam
          acquirendam a nobis sublatam, hoc rei impossibilitate agente et
          natura ipsam tantae oppositionis coincidentiam repellente. Ego vero
          rei huius difficultatem in parvitate apprehensionis et intermissione
          diligentiae, non summo acumine vigilantium, ut obscuritas negotii
          deposcit, potius existimans dato qualicumque otio ad artem novam,
          qua ad quaesitum pertingerem, me contuli ei diligenter satis ob
          altiores fines insudando, quousque cunctarum meditationum mearum
          subscriptam formula facilem resolutionem efficerem. Quoniam autem in
          tanta et hactenus ignota arte, a qua non tantum perfectio
          geometricae transmutationis dependet, sed et etiam introductio ad
          altiora ascendendi figuratur, non erat in obscuritate et parvitate
          ingenioli mei confidendum, recte statui ad te, arbitrum peritissimum
          atque veritatis zelatorem, confugere et iamdudum probatissimo amico
          inventionem pandere, ut in statera aequissimi iudicis extimetur.
          Noli igitur, amice dilectissime, ista, etiam si in maioribus
          verseris, quasi cruda indigestaque abicere. Lectu enim parva,
          intellectu vero facillima sunt. Sed quanto me ab annis iuventutis
          atque adolescentiae nostrae strictiori amicitiae nodo atque cordiali
          quodam amplexu indesinenter constrinxisti, tanto nunc accuratius
          emendationi animum adhibe et in communionem aliorum nisi correctum
          predire non sinas.

          [image: link to parallel text] 3. Post innumeros paene modos, quibus, semper tamen
          deficiens, ad institutam artem pervenire contendi, tandem ad
          principium, quo in De docta ignorantia usus sum, respiciens via mihi
          patefacta existit. Exigit autem ars, quam inquiro, praeter ea iam
          tradita in geometricis versionem curvi in rectum ac recti in curvum.
          Inter quae cum nulla rationalis proportio cadat, oportet in quadam
          coincidentia extremorum hoc latere secretum. Quae cum in maximo sit,
          ut alibi traditur, et maximum sit circulus, qui ignoratur, in
          minimo, qui est triangulus, inquiri ipsum debere ibi ostenditur.

          [image: link to parallel text] 4. Omnium autem figurarum multorum angulorum, quae
          polygoniae, et aequalium laterum, quae isopleurae, et eiusdem
          longitudinis laterum, quae eandem habentes peripheriam isoperimetrae
          dicuntur, triangularem minimae capacitatis existere constat. Et cum
          tanto quaelibet isoperimetra sit capacior, quanto plures angulos
          habuerit, erit circulus isoperimeter figurarum omnium capacissima.
          Ad quam per angulorum multiplicationem deveniri nequit, sicut nec in
          numero ad maximum. Nulla igitur polygonia ad circularem
          isoperimetram proportionem rationalem habere potest.

          [image: link to parallel text] 5. Quia vero differentia capacitatis
          isoperimetrarum figurarum correspondet differentiae
          ‹semidiametrorum› circulorum infrascriptorum eisdem, ut iam ante hoc
          notum est, quare nec circulus inscriptus, qui semper minor est, nec
          circumscriptus, qui semper maior est, ad circulum isoperimetrum
          rationalem proportionem habebit. Semidiametri autem illorum iam
          dictorum circulorum maxime inaequales in trigono existunt, in aliis
          successive minus inaequales, in circulo vero ‹isoperimetro›
          coincidentes, cum ibi inscriptus, circumscriptus et peripheria
          coincidant. Hinc inquirendum, qua arte ad coincidentiam ipsam atque
          propositum nostrum pertingere valeamus.

          [image: link to parallel text] 6. Videtur autem ad artis quaesitae sufficientiam
          primum pertinere, ut datae rectae detur aequalis curva. Secundo, ut
          secundum habitudinem curvae ad curvam detur recta ad rectam. Tertio,
          ut inter datas lineas duae proportionales assignentur. Quarto, ut
          secundum habitudinem duarum datarum sciatur ad tertiam datam dari
          quarta. Primum hactenus ignotum. Secundum nondum consideratum.
          Tertium a paucis obscure tactum. Quartum clare a multis explicatum.
          Complicatur in his omne, quod transmutatoriae huic arti opportunum
          est, ut praemissis istis, quae circa haec necessaria sunt, in
          exemplaribus subsumptionibus ostendere conabor.

          
            Primum praemittendum

            [image: link to parallel text] 7. Posse lineam curvam esse, quae datae rectae
            nec maior nec minor sit, ab omnibus admittitur, licet non omnes
            eam signari posse affirment. Potest igitur peripheriae datae
            polygoniae circuli alicuius peripheria nec maior nec minor esse,
            ut sint isoperimetrae. Sed quomodo haec detur, inquirimus.

            [image: link to parallel text] 8. Quoniam autem tanto circulus polygoniae
            aequilaterae seu isopleurae circumscriptus maior est quanto ipsa
            paucorum angulorum, et ei inscriptus tanto minor, hinc nemo negare
            potest, quin omnis circulus polygoniae aequilaterae inscriptus
            minor sit circulo isoperimetro atque quod omnis circumscriptus
            maior. Quare inter inscriptum atque circumscriptum isoperimeter
            cadens habet semidiametrum omni semidiametro cuiuscumque inscripti
            circuli cuicumque polygoniae isopleurae et isoperimetrae maiorem
            et circumscripti semidiametro minorem. Manifestabitur autem id,
            quod quaerimus, post multos difficiliores modos facili
            consequentia ex hac propositione:

            [image: link to parallel text] 9. Semidiameter circuli isoperimetri trigono
            inscripto se habet ad lineam a centro circuli, cui trigonus
            inscribitur, ad quartam lateris ductam in proportione
            sesquiquarta.

            [image: link to parallel text] 10. Sit circulus super a
            centro descriptus, cui bcd trigonus
            inscribitur, diviso bc latere in quattuor
            partes aequales per e, f, g signatas. Dico,
            si de a ad e linea
            ducta extendatur per quartam sui, ut sit ah, illam fore semidiametrum circuli, cuius
            circumferentia aequatur tribus trigoni lateribus.

            [image: link to parallel text] 11. Hoc sic facillime verum comprobatur. Nam
            tracta de a ad f
            linea illam semidiametrum circuli inscripti fore constat, quae est
            omnium inscriptorum polygoniis isoperimetris minima. Et similiter
            linea de a ad b
            ducta est semidiameter circumscripti, quae est omnium
            circumscriptorum isoperimetris polygoniis maxima (cfr. figura 1). Et si de a prope f ad i punctum lineam duxeris extendendam secundum
            habitudinem if portionis ad bc latus, quae extensa sit ak illam minorem esse semidiametro circuli
            isoperimetri manifestum, cum semidiameter circuli isoperimetri sit
            omnium inscriptorum polygoniis isoperimetris maxima. Similiter si
            de a prope b ad
            punctum f linea ducta extensa fuerit
            secundum habitudinem portionis if ad bc, quae sit am, illam
            esse maiorem quaesita per se clarum est, cum quaesita sit omnium
            ‹semi›diametrorum circulorum circumscriptorum polygoniis
            isoperimetris mimima. Potest igitur inter l
            et i ad aliquem punctum de a linea duci, quae extensa secundum habitudinem
            portionis inter punctum illum et f cadentis
            ad latus bc aequabitur quaesitae.

            [image: ]
Fig. 1
[image: link to parallel text] 12. Pariformiter si fuerit linea ai extensa secundum habitudinem portionis ib ad bc, ut sit an, illam minorem fore quaesita manifestum est.
            Et similiter si fuerit al extensa secundum
            habitudinem lb ad bc, ut sit ao, illam
            maiorem esse quaesita certum existit. Cadet igitur inter l et i punctus, ad quem
            de a linea ducta et extensa secundum
            habitudinem portionis inter punctum illum et b cadentis ad bc latus
            aequabitur quaesitae. Unde uti reperitur punctus, puta i, ad quem linea ducta si extenditur secundum
            habitudinem ambarum portionum sive versus b
            sive versus f ad latus trigoni, remanet
            minor. Et alius punctus, videlicet l,
            reperitur, ad quem linea ducta sive extendatur secundum
            habitudinem unius sive alterius portionis ad latus trigoni, fit
            semper maior quaesita. Sic erit punctus e
            tertius, ad quem linea ducta et extensa secundum habitudinem
            cuiuscumque portionis ad latus trigoni non fit nec maior nec
            minor. Et constat alium quam e punctum esse
            non posse, in quo solum secundum utriusque portionis extensionem
            idem evenire potest.

            [image: link to parallel text] 13. Poteris pariformiter dicere: si ai linea extenditur secundum habitudinem fi ad bc, est minor, et
            similiter: si extenditur secundum habitudinem quadrati if ad quadratum bf, est
            minor. Et si al extenditur secundum
            habitudinem lf ad bc, est maior, et similiter: si extenditur
            secundum habitudinem quadrati lf ad
            quadratum bf, est maior. Erit igitur
            punctus inter l et i, ad quem linea ducta et extensa secundum
            habitudines duas iam dictas nec maior erit nec minor, et hoc
            necessario est e.

            [image: link to parallel text] 14. Poteris etiam adhuc adicere tertiam
            habitudinem, scilicet si ai extensa
            secundum habitudinem quadrati if ad
            quadratum bf et habitudinem if ad bc et habitudinem
            bi ad bc, semper est
            minor, et al secundum illas habitudines
            extensa est maior. Erit punctus ad quem linea de a ducta et secundum trinas istas habitudines
            extensa nec est maior nec minor, et iste est e punctus aequedistans a b et f.

            [image: link to parallel text] 15. Probatur autem idipsum hac via. Manifestum
            est in omni polygonia isoperimetra lineam de centro ad punctum
            medium lateris esse semidiametrum inscripti et continue secundum
            capacitatem maiorem polygoniae plus accedentem ad aequalitatem
            semidiametri circuli isoperimetri, et similiter lineam ductam de
            centro ad finalem terminum lateris esse semidiametrum circuli
            circumscripti et illam tanto minorem continue fieri, quanto
            capacior fuerit polygonia. Cadet igitur inter illa duo puncta,
            scilicet terminalem et medium lateris cuiuslibet polygoniae,
            punctus unus, ad quem si linea de centro ducitur et secundum
            habitudinem quadrati portionis inter punctum contactus et medium
            lateris ad quadratum medii lateris vel secundum habitudinem
            portionis ad latus extenditur, erit ut semidiameter circuli
            isoperimetri. Et hoc quidem nihil haesitationis habet.

            [image: link to parallel text] 16. Continget autem hunc punctum in omnibus
            polygoniis differenter distare ab illis duobus punctis, scilicet
            terminali et medio lateris, plus accedendo ad medium lateris et
            recedendo ab extremali, quanto capacior fuerit polygonia. Sicut
            igitur hic punctus continue accedit ad medialem in capacioribus,
            quousque in capacissima deveniatur ad coincidentiam omnium trium
            illorum punctorum, ita necessario in minus capacibus recedit
            punctus ille a mediali, quousque in minime capaci ab illis duobus
            punctis maxime distet. Quare e est medius
            punctus aequaliter maxime ab extremis distans, in quo
            incapacissimo trigono habetur quaesitum. Ob hoc omnis semidiameter
            circuli circumscripti cadit de a ad aliquem
            punctum lineae be secundum praefatas
            habitudines portionis versus b extensae, et
            ae sic extensa est omnium illarum minima.
            Hinc est semidiameter circuli isoperimetri, cum semidiameter illa
            sit omnium semidiametrorum talium circumscriptibilium circulorum
            minima, cum qua coincidit maxima semidiameter inscriptibilium.
            Unde in e puncto est coincidentia
            ascensionum de f versus e semidiametrorum inscriptibilium et
            descensionum de b versus e semidiametrorum circumscriptibilium,
            extensionibus factis secundum praefatas habitudines portionum
            versus b in una et versus f in alia.

          
          
            Secundum praemittendum

            [image: link to parallel text] 17. Aiebam iam ante praemitti oportere, qua via
            habitudo attingeretur inter rectam et rectam, quae est inter
            curvam et curvam, quoniam, ut sequentia ostendent, perfectio
            transmutatoriae artis, quam inquirimus, non poterit hoc ignorato
            adipisci. Cumque ego inquirendo hoc ipsum ad rectilineum trigonum
            respicerem, ubi de portione lateris unius ad similem lateris
            alterius portionem linea ducta ad latus primum triangulum
            claudens, a quo aequedistat, eam habet proportionem qualem portio
            lateris alterius, per quam ducta est, ad totum latus; et simile in
            arcu inquirerem quale hic in latere rectilineo, vidi quod si
            triangulum depingerem unum latus arcuale habens et aliud
            rectilineale, tunc non possit linea per portionem arcualis lateris
            duci ad alterius lateris similem portionem, quae se ad latus
            rectilineum secundum quaesitam habitudinem habeat, si latus
            tertium fuerit rectilineum. Nam si latus curvum fuerit convexum,
            manifestum est de eius medio ad medium rectilineam ductam maiorem
            esse medietate lateris rectilinei triangulum claudentis. Si vero
            concavum fuerit, necessario minus erit.

            [image: link to parallel text] 18. Sic si arcuale fuerit latus, tunc si fuerit
            uti aliud, puta concavum si est concavum aut convexum si est
            convexum, erit linea maior aut minor per portionem tracta ut in
            genere iam statim praemisso. Sed si latus ipsum fuerit convexum
            alio existente concavo, et fuerint portiones arcuales eiusdem
            circumferentiae circularis et aequales, excedere necesse est
            lineam per portiones arcuales eiusdem ductam eam, quae secundum
            habitudinem esse debet quaesitam. Nam chordae si arcubus
            subtenduntur, eundem efficiunt angulum quem arcus. Et si fuerint
            chordae medietatum arcuum, iterum idem angulus exsurget. Et cum
            chordae medietatis excedant medietatem chordarum integri arcus,
            erit manifestum lineam de medietate ad medietatem ductam secundum
            excessum chordae medietatis arcus super medietatem chordae integri
            arcus excedere.

            [image: link to parallel text] 19. Oportet ergo alterum latus arcuale alio
            brevius esse. Non potest autem concavum brevius esse. Nam chordae
            si illis arcubus subtenderentur, angulus chordarum angulo arcuum
            minor esset, et ille angulo, qui ex chordis medietatis arcuum
            exsurgeret. Hinc linea de portione ad portionem tracta maior foret
            quaesita. Quare necesse erit, quod triangulus ille, quem
            quaerimus, sit ex tribus lateribus, quorum duo sint arcualia
            inaequalia, ita quod maius sit maior portio circumferentiae
            circuli et concave superficiem claudat, aliud vero arcuale latus
            minor sit portio circumferentiae eiusdem circuli et convexe
            superficiem trianguli terminet, tertium autem latus rectum
            existat. Necesse est autem, quod cum lateribus istis arcualibus
            chordas subtendis, quod angulus chordarum maior sit angulo arcuum
            et angulus chordarum medietatis arcuum maior angulo arcuum et
            minor angulo chordarum integrorum arcuum, tanto quidem minor,
            quanto excedunt chordae medietatis arcuum chordas medias
            integrorum. Et cum hac via conspicerem possibile fore dato
            triangulo iam dicto lineas per portiones ductas esse minores ac
            etiam esse maiores atque aequales quaesitis, quaerere proposui
            triangulum, cuius latus rectilineum esset ut semidiameter circuli
            laterum arcualium, et quod latus maius arcuale esset ut
            quadrans.

            [image: ]
Fig. 2
[image: link to parallel text] 20. Descripsi igitur quadrantem bc super a centro ac
            posito pede circini in c descripsi
            semicirculum ade (cfr. figura 2). Divisi arcum bc per medium significando f, descripsi semicirculum super f, qui sit gh, cuius
            semidiameter ut medietas ac. Descripsi
            super b semicirculum occultum ik et in eius circumferentia quaesivi punctum,
            in quo posito uno pede circini et alio in b
            extenso arcum describerem, qui transiret per semicirculum minorem
            gh ad semicirculum maiorem ade, ita quod punctus arcus illius, ubi secatur
            semicirculus gh, puta l, sit medius totius arcus aequedistans a b puncto et a puncto contractus arcus de, puta m. Aequaliter
            traxi igitur lineam cm et habui triangulum
            cbm quaesitum. Cum autem quaererem punctum
            m, adverti ipsum necessario debere distare
            a d per medietatem arcus bc, puta medietatem quadrantis. Nam hic punctus
            est cadens inter propinquissimum et remotissimum possibiles.
            Posito enim pede circini in circumferentia occulta aki, scilicet in a,
            propinquissimus punctus erit d, qui est
            coincidens cum bc arcu. Et si posuero pedem
            circini in puncto, ubi arcus occultus aki
            secat de, puta in i,
            et descripsero bn arcum, erit n maxime distans. Non enim poterit in arcu de punctus reperiri plus distans a d. Manifestum est autem d
            n in arcu de per quadrantem distare,
            in cuius medio est m punctus, in quo
            extrema ad aequalitatem mediam reducta reperiuntur. Hac via
            triangulum quaesitum adinveni.

            [image: link to parallel text] 21. Post haec adverti, si cm ducerem in continuum et directum in
            infinitum et ducerem de l per f lineam similiter in continuum, quod
            necessario illae in aliquo puncto concurrerent, cum non sint
            aequedistantes. Notavi igitur punctum concursus per o punctum. Consideravi igitur, quod lineae
            omnes, quae de portione ad portionem et in continuum ducerentur,
            cum ambabus illis necessario concurrerent, nec citius cum una quam
            cum alia. Quare omnes in o puncto
            convenirent. Habui igitur, quod si de o
            puncto linea duceretur per quamcumque portionem quadrantis bc usque ad arcum bm,
            quod portio lineae rectae illius illos inter arcus cadens se
            habebit ad rectam cm sicut portio arcus de
            b ad sectionem lineae rectae ad totam
            quadrantem bc, puta eadem est proportio
            arcus bf ad bc
            quadrantem, quae est lineae fl ad lineam
            cm, et hoc erat quaesitum.

          
          
            Tertium praemittendum

            [image: link to parallel text] 22. Tertium, quod antemittendum asserui, est
            quomodo inter datas lineas duae proportionales statuantur.
            Iamdudum notissimum fuit, si datae duae lineae simul iunctae
            diameter circuli fiant et eas chorda orthogonaliter separaverit,
            quod semichorda est medio loco inter ipsas proportionalis, quoniam
            semichordam inter sagittam et residuum diametri mediare
            necessarium est (cfr. figura 3). Si igitur duae lineae indefinitae longitudinis,
            ut ab et cd, se
            orthogonaliter secaverint in e puncto, et
            de e versus d
            minorem lineam signavero, quae sit ef, et
            de e versus a
            maiorem, quae sit eg, descripseroque duos
            semicirculos, unum super centro in linea ec, puta k, alium super
            centro in ea, puta h, existente hac quadam advertentia, quod arcus
            semicirculi, cuius centrum reperitur in ea
            linea, concurrat cum arcu alterius semicirculi in linea eb et linea ec, puta
            punctis i et l. Nemo
            haesitare potest ei et el mediare, ex praemissa notissima regula unici
            medii proportionalis, inter ef et eg.

            [image: ]
Fig. 3
[image: link to parallel text] 23. Unde, ut in praxi haec media facile attingas,
            habeto gnomonem atque lineam unam, quae ad latus gnomonis
            applicata rectangulum efficiat (cfr. figura 4). Et iuxta
            praemissa duas indefinitae quantitatis lineas sic fac
            orthogonaliter secare, ponas deinde rectum angulum gnomonis super
            lineam eb et latus unum super f, et nota, ubi reliquum latus ec secaverit, applica ibi regulam ad latus, de
            qua dixi, ut rectangulum efficiat. Si haec regula per g transiverit, habes quaesitum. Si non,
            gnomonem in eb attrahe vel elonga, quousque
            ita evenerit, et habes media illa duo, quae inquiris. Possunt
            quidem et alii plerique modi de facili inveniri per eum, qui
            studium adhibere voluerit. Sed hic modus cum clarus sit, ad
            praesens sufficit.

            [image: ]
Fig. 4
[image: link to parallel text] 24. Quomodo autem ad tres datas proportionales
            lineas quarta continuae proportionis linea subiungi valeat, iam
            ante atque ex praemissis relinquo manifestum.

          
          
            Quartum praemittendum

            [image: link to parallel text] 25. Quartum autem, quomodo in habitudine datarum
            ad tertiam datam detur quarta, omnibus paene manifestum in praxi,
            per duos triangulos unum angulum communem et ceteros aequales
            habentes inquiras (cfr. figura 5). Nam si ab est linea una, alla cd, tertia ef, iunge ad
            angulum quemvis ab et cd, qui sit ghi, et
            claude trigonum. Deinde continua gh latus
            aequale ab, quousque fuerit aequale ef, et sit gk. Trahe
            aequedistantem ad hi, quae sit kl, et continua gi usque
            in ipsam, et sit gm. Nulli nisi parum
            sciolo dubium est km lineam ad gk, quae aequatur ef, se
            habere ut hi, quae aequatur cd, ad gh, quae aequatur
            ab. Haec de praemittendis sic dicta
            sint.

            [image: ]
Fig. 5

          
            De linearum in invicem transmutatione – capitulum
            primum

            [image: link to parallel text] 26. Omnis autem transmutatio in geometricis
            figuris est vel lineae in lineam, vel superficiei in superficiem,
            aut corporis in corpus. Tria igitur sunt capitula, quae seriatim
            per exemplari manuductione tangi convenit.

            [image: link to parallel text] 27. Si lineam rectam in circumferentialem curvam
            vertere cupis, ipsam rectam in triangulum aut polygoniam
            isopleuram resolvito et ex primo praemissorum circulum
            isoperimetrum elicito, cuius circumferentia datae rectae
            adaequabitur.

            [image: link to parallel text] 28. Si rectam in aliquotam circumferentiae
            portionem resolvere quaeris, ipsam in circularem integram
            resolvito, et ex proportione illius ad partem aliquotam pervenies
            ad quaesitum. Nam eadem est habitudo circumferentiarum quae
            semidiametrorum.

            [image: link to parallel text] 29. Si datam rectam in quadrantem resolvi optas,
            quarta circumferentiae circuli, cuius semidiameter est quadrupla,
            est quaesitum.

            [image: link to parallel text] 30. Si datam rectam in portionem circumferentiae
            dati circuli transferre quaeris, eam primo in circonferentiam
            circuli commuta, et ex nota habitudine semidiametrorum inventi et
            prius dati circulorum propositum notificabitur.

            [image: link to parallel text] 31. Si curvam lineam in rectam vertere studes,
            non alio umquam hoc facies ingenio quam ex ope quarti praemissi.
            In qua re paene omnes errasse comperio. Nam curva linea non potest
            inrectam mutari nisi ex proportione alicuius rectae in curvam
            versae. Dum igitur hoc agere proponis, primo rectam in
            circumferentialem vertito et huius circuli semidiametrum notato
            pro prima linea. Deinde tertiam rectae versae aut aliam portionem
            eius facito secundam lineam, et tertiam semidiametrum circuli,
            cuius circumferentiam rectilineare proponis, signato. Et
            triangulos claudito, quorum angulus unus communis et alii
            aequales, lateraque communi angulo opposita aequedistantia
            existant. Erit enim secundum latus portio lineae quaesitae,
            scilicet pars tertia, si latus aequedistans primum pars tertia
            circumferentiae fuerit; si alia, tunc alia. Per hoc scitur versio
            circumferentiae in rectam. Scitur etiam versio arcus, qui est pars
            aliquota et nota circumferentiae.

            [image: link to parallel text] 32. Quod si ignoraveris proportionem dati arcus
            ad circumferentiam, cuius rectilineationem perquiris, utere
            secundo praemisso et fac lineam de o puncto
            concursus per arcum quaesitum aut eius aliquotam usque ad arcum
            alium transire, et lineam inter arcus cadentem notato. Deinde fac
            semidiametrum esse lineam primam, et lineam aequalem quadranti aut
            eius aliquotam fac secundam, et lineam tertiam facito eam, quam
            inter arcus cadentem annotasti. Et iuxta quartum praemissum per
            triangulos quaesitam lineam reperies.

            [image: link to parallel text] 33. Neque alia via hoc quaesitum attingetur, qua
            etiam si advertis duci poteris, ut datam rectam in arcum vertas
            datae circumferentiae, etiam si eius arcus ad circumferentiam
            proportio ignota existat (cfr. figura 6). Hoc autem eo
            ingenio: Semidiametrum circuli fac latus primum trianguli, et
            lineam rectam quartae circumferentiae aliud claudendo trigonum, ut
            si semidiameter sit ut ab, et bc ut quarta circumferentiae, claudendo linea
            ca trigonum. Deinde fac lineam datam aut
            eius aliquotam cadere in eo trigono aequedistantem ad bc, et sit de. Post hoc
            de b versus c signa
            aequalem semidiametro ab lineam, quae sit
            bf, trahe af lineam
            et nota sectionem de, quam nota per g litteram. Deinde recurre ad secundum
            praemissum et lineam ducito de communi puncto concursus, quousque
            inter arcus cadat aequalis portio ad dg, et
            hic est arcus aequalis datae lineae aut portio aliquota arcus
            quaesiti, si cum portione lineae fueris operatus.

            [image: ]
Fig. 6
[image: link to parallel text] 34. Poteris etiam ex his datam curvam et
            cuiuscumque circumferentiae arcum quemcumque in alium arcum
            alterius circuli vertere, transmutando primo ipsam datam curvam in
            lineam rectam et deinde illam rectam in arcum datae
            circumferentiae modis praetactis. Et in hoc capitulum
            transmutationis linearum sufficienter explicatum existit.

          
          
            De superficierum in invicem transmutatione – capitulum
            secundum

            [image: link to parallel text] 35. Superficierum transmutati ut sufficienter
            explicetur et superflua resecentur, rectilinealium superficierum
            versionem uti notam praetergredior. Nam triangulum posse in plures
            scindi triangulos, et quemlibet in quadrangulum verti et illorum
            quemlibet in quadratum, et plura quadrata in unum, atque trigonum
            unum in plures aequiangulos trigonos, et triangulum similiter
            atque quadratum sic et omnia polygonia isopleura et non isopleura
            in alias figuras, haec omnia ex elementis geometricis et
            proportione circulorum et quadratorum tibi nota relinquo, cum
            intendam adicere scitis et non replicare trita. Per ea autem, quae
            iam ante tetigi, facilitas huius capituli aperitur.

            [image: link to parallel text] 36. Superficiem circularem si in rectilinearem
            transmutare proponis, primo eius peripheriam curvam in rectam
            resolvito, deinde semidiametrum peripheriae ad rectum angulum
            iungito trigonum claudendo, et versa est circularis superficies in
            trigonam. Si in tetragonam, quadrangulam et quadratam, hoc ex
            trigono facile est. Circulus enim quadratur, si inter
            semidiametrum et medium peripheriae lineam medio loco
            proportionalem costam feceris et quadraveris. Ostensum enim est a
            subtilioribus per multiplicationem semidiametri in medietatem
            peripheriae aream quadrangulam exsurgere, quae nec maior nec minor
            erit areae circuli. Multiplicatio enim semidiametri circuli
            inscripti polygoniae in medietatem peripheriae areae polygoniae
            inscriptae aequatur, et multiplicatio semidiametri circuli
            circumscripti in medietatem peripheriae polygoniae est maior area
            polygoniae et minor area circuli, et multipIicatio ipsius
            semidiametri circuli inscripti in medietatem peripheriae omnis
            polygoniae circumscriptae pariformiter areae eius similis est,
            hinc maior area circuli. Quare multiplicatio semidiametri in
            medietatem peripheriae circuli nec maior nec minor esse
            poterit.

            [image: link to parallel text] 37. Si vero quaeris aream superficiei
            rectilinealis in circularem transmutare, primo circularem
            resolvito per iam dicta in polygoniam, puta quadratam, et
            semidiametrum circuli facito lineam unam, costam quadrati aliam.
            Deinde superficiem rectangulam datam quadra, et costam eius facito
            lineam tertiam. Et secundum quartum praemissum quartam lineam
            reperies, quae erit semidiameter circuli quaesiti. Et attende,
            quomodo non devenitur ad versionem circumferentialis lineae in
            rectam nisi per versionem rectae alicuius in circumferentialem. Et
            e contrario non devenitur ad transmutationem superficiei
            rectilinealis in circularem nisi mediante versione alicuius
            circularis in rectilinealem. Quae hic lateant arcana, praesentis
            propositi non existunt.

            [image: link to parallel text] 38. Si vero quamcumque portionem superficiei
            circularis inter sectores cadentem, sive illa proportionalis sit
            ad superficiem totam sive non, vertere cupis, artem habes arcum
            inter sectores interceptum resolvendo in rectam et semidiametrum
            in medietatem eius multiplicando.

            [image: link to parallel text] 39. Sic si abscisionem ex chorda et arcu in
            rectam superficiem redigere conaris, primo a centro sectoribus
            tractis totam portionem per iam dicta resolvis in circulum, deinde
            triangulum ex sectoribus et chorda similiter in circulum, et
            subtracto illo a priori portio remanet resoluta in superficiem
            cadentem inter circumferentias amborum, quae resolvi potest in
            rectangulam superficiem per resolutionem utriusque circuli in
            quadratam et per subtractionem unius quadratae ab alia, quoniam
            differentia est uti portio illa. Poterit igitur illa in quadratam
            superficiem et per quadratam in circularem resolvi modis
            sufficienter praeexpressis. Et in hoc satis exemplificatum est ad
            artis sufficientiam de superficierum in invicem
            transmutatione.

            [image: link to parallel text] 40. Possent adiungi praeter necessitatem
            transmutatoriae artis alia plura occulta hactenus, quomodo
            scilicet angulus describi posset circa centrum circuli se habens
            inter duos duplos angulos secundum proportionem medietatis duplae,
            et hoc ex secundo praemisso. Potest enim dari linea recta ad datam
            se habentem ut costa ad diametrum. Possunt et ambae in arcus
            eiusdem circumferentiae resolvi. Unde sectores ad terminos arcuum
            tracti angulos circa centrum causare secundum habitudinem arcuum
            necesse erit.

            [image: link to parallel text] 41. Si etiam superficiem unam resolvere quaeris
            in plures, quot volueris, quae sunt ad se et totam superficiem
            improportionales, ita tamen quod si addideris unam ad aliam,
            composita totius aliquota sit, superficiem illam, si
            semicircularis non fuerit, in talem resolvito trahendo chordam
            aequedistantem diametro arcus quadrantis, quae medium divisionis
            vocetur (cfr. figura 7). Ab ea ex utraque parte per aequales arcus
            maiores et minores chordas ducito, quot volueris. Erunt omnes
            portiones improportionales ad se et ad totam. Sed si duas
            aequedistantes a medio divisionis iunxeris, erunt talis pars
            superficiei, qualis circumferentiae fuerit arcus. Qua via de media
            superficie semicirculari abscindere poteris partem aliquotam eius,
            quam volueris. Huius ostensio est, cum trianguli ex sectoribus et
            chordis a medio divisionis hinc inde per aequales arcus
            distantibus sint necessario aequales et maximus sit ille
            triangulus, qui ex sectoribus et chorda, quae divisionis medium
            vocatur, constituitur. Poteris etiam superficiem dividere in
            partes, quarum una, si cuicumque alteri iuncta fuerit, [quod]
            adhuc composita ex ipsis superficies improportionalis remaneat,
            quando scilicet a medio divisionis per improportionales arcus ad
            circumferentiam chordas duxeris. Ex his alia ut libet elicias.

            [image: ]
Fig. 7

          
            De corporalium figurarum in invicem transmutatione –
            capitulum tertium

            [image: link to parallel text] 42. Ultimo loco restat corporum transmutationem
            exemplari manuductione aperire. Transmutantur autem corporales
            figurae in corporales ex apertis fundamentis.

            [image: link to parallel text] 43. Nam columna quadrangula in cubum sic
            reducitur. Basis eius si quadrata non fuerit, quadretur per medium
            proportionale inter duo dissimilia eius latera. Inter hoc latus et
            longitudinem corporis constituantur duae continue proportionales
            lineae secundum tertium praemissum, et si longitudo 'H~'maior
            fuerit latere quadrati, minus medium est latus cubi quaesiti. Sed
            si latus quadrati fuerit maius longitudine, maius medium est
            quaesitum. Si aequale, iam cubus habetur. Si columna fuerit
            rotunda, quadretur basis et procedatur, ut iam dictum est.

            [image: link to parallel text] 44. Sed si cubum in sphaeram transmutare velis,
            reduc superficiem quadratam cubi in circulum et illum facito
            maiorem circulum sphaerae.

            [image: link to parallel text] 45. Cubos plures si in unum colligere optas, hoc
            efficias, si aequales fuerint, lineam unam signando pro minori,
            quae aequetur uni lateri unius, et aliam pro maiori, quae omnibus
            lateribus, duplex medium inter illos capiendo secundum tertium
            praemissum, quoniam minus inter illa duo latus est quadrati, uti
            de columna praemisimus.

            [image: link to parallel text] 46. Sed si duos inaequales ad unum conducere
            proponis, reduc primo minorem cubum ad corpus altera parte
            longius, cuius longitudo sit aequalis lateri maioris cubi, hoc
            modo: Accipe latus maioris, cui adiunge directe latus minoris,
            unum proportionale medium quaerendo inter illa, et linea alia
            reperiatur continue proportionalis post latus minoris, ut sint
            quattuor lineae continue proportionales. Et illa ultimo inventa
            est latus quadrati basis huius corporis altera parte longioris, et
            latus maioris quadrati est eius longitudo, ut ex opposito
            conversionis columnae patere potest. Quo reducto quaere quadratum
            aequale duobus, maioris cubi et basis iam dicti altera parte
            longioris, reducendo cubum maiorem et iam dictum corpus ad unum
            corpus, cuius latus basis quadratae est maius longitudine eius. Et
            hoc corpus ultimo ad cubum reducito per datam doctrinam. Ita patet
            via, quot volueris sive aequales sive inaequales cubos ad unum
            cubum sive denique ad sphaeram transmutandi. Ita quidem et
            sphaerae plures in unam et in cubum aut corpus altera parte
            longius reduci poterunt.

            [image: link to parallel text] 47. Sed si columnam longam in brevem vel brevem
            in longam reducere proponis, primo ipsam in cubum verte, deinde
            longitudinem signa, in quam eam transmutare proponis. Cui adiunge
            latus cubi quaerendo medium unum proportionale et quartam
            quantitatem continue proportionalem ad istas tres. Et erit datae
            longitudinis columnae basis quadrata linea quarta.

            [image: link to parallel text] 48. Sic si plurium columnarum aequalium vel
            inaequalium unam datae quaeris longitudinis, si aequales fuerint,
            basim unam omnibus aequalem recipito, quam in cubum reducito et
            cubum in columnam datae longitudinis per vias praeapertas. Si
            inaequales, reducito ingenio tuo omnes in columnam et columnam in
            cubum et illum in columnam longam vel brevem, prout placuerit. Sed
            in hoc opus est, ut caveas, quoniam quando cubus in corpus reduci
            debet, cuius latus basis quadratae est maius longitudine, tunc
            basis latus iungas cum longitudine dati minori quaerendo medium
            unum proportionale. Quo habito lineam quartam invenies se ad illam
            habentem sicut latus basis cubi ‹ad longitudinem›, et illa erit
            latus basis quadratae talis corporis, in quod alia reducere
            proponebas. Sed si optas, quod longitudo illius quaerendi corporis
            sit maior latere basis quadratae eius, iunge illam longitudinem
            cum latere cubi directe medium proportionale quaerendo, post latus
            cubi quarta linea continue proportionalis est latus quaesitum.

            [image: link to parallel text] 49. Si autem sphaeram in pyramidem transmutare
            quaeris, fac quod basis pyramidis aequetur curvae superficiei
            sphaerae et altitudo eius ‹semi›diametro sphaerae.

            [image: link to parallel text] 50. Si quis dixerit: sunt sphaerae duae, quarum
            maior est dupla ad minorem, transfer illas in rotundam columnam,
            fac quod columnae altitudo sit ut diameter sphaerae ‹maioris› et
            basis ut maior circulus eiusdem. Illa etenim columna ambabus
            aequatur sphaeris. Nam columna, cuius altitudo diametro et basis
            maximo circulo sphaerae aequantur, sesquialtera est ad
            sphaeram.

            [image: link to parallel text] 51. Talia quidem et quae in regularibus
            corporibus via transmutationis figurarum geometrice fieri possunt,
            ex his elicito doctrinis.

          
          
            ‹Additamentum›

            [image: link to parallel text] In editionibus σ hic textus capitulorum 20 et 21
            traditus est

            [image: ]
Fig. 8
α. Descripsi igitur quadrantem bc super a centro, et
            posito pede circini in c descripsi
            semicirculum ade (cfr. figura 8). Quaesivi in
            dicto genere triangulorum minimum et vidi, si recta ducatur a
            puncto c ad punctum d, describet angulum contingentiae cum
            quadrante, quare tertium latus claudens istum triangulum erit
            minimum, cum angulus, cui subtenditur, scilicet contingentiae,
            minimus dicatur. Facto igitur b centro
            circumduco ab et quadrantem occultum
            describo ad aequalem quadranti bc. Rursus facto d
            centrum circumduco cd, et ubi secat
            quadrantem occultum ad, pono g. Et posito pede circini in g et alio in b moveo b usque ad punctum d;
            eritque arcus descriptus, scilicet bd,
            eiusdem circularis cum arcu quadrantis bc.
            Omnes quippe rectas ductas a quadrante occulto ad punctum b ‹cum sint aequales› arcus eiusdem circularis
            sive aequalium circulorum describere est necesse.

            [image: link to parallel text] β. Erit bd latus arcuale minimum et convexum; quare
            triangulus bcd erit minimus in dicto genere
            triangulorum, cum contineat minimum angulum, scilicet
            contingentiae, ratione cuius bd arcuale
            latus ei subtensum minimum est. Et quia minimum, erit bc latus arcuale maximum. Non enim potest dari
            latus minus bd; si enim minus esset, tunc
            dc latus rectilineum quadrantem bc secaret, et sic triangulus iste non esset in
            genere quaesitorum. Est igitur bcd
            triangulus, cuius duo latera arcualia sunt bc et bd, et maius
            concavum est et quadrans, alterum convexum et minus; quae latera
            arcualia sunt eiusdem circularis, cuius semidiameter est tertium
            latus rectilineum, scilicet dc. Et quia in
            isto genere non potest dari triangulus, cuius latus convexum minus
            sit bd, erit igitur in isto genere
            triangulorum bcd triangulus minimus. Rursus
            cum in isto genere triangulorum dabiles sint maiores, quorum
            scilicet arcuale latus convexum maius sit arcu bd, recte maximus dabitur, ubi arcuale latus et
            convexum aequale erit concavo, quod est maximum. Ad quod
            describendum traho bc rectam, et facto b centro circumduco bc, 
            et ubi secat semicirculum, pono h.  Traho
            hc et facto h centro
            circumduco hc, et ubi secat quadrantem
            occultum, pono m. Rursus posito pede
            circini in m puncto et alio in b moveo b usque h; erit arcus descriptus, scilicet bh, aequalis quadranti bc. Nam aequali semidiametro descripti sunt, et
            chordae arcuum sunt aequales; quare eiusdem circularis erunt. Quo
            fit, ut triangulus bhc, cuius duo latera
            arcualia eiusdem circularis aequalia sunt, scilicet arcus bc et arcus bh, tertium
            vero rectilineum, scilicet hc, aequale
            semidiametro circulorum arcuum, sit maximus in dicto genere
            triangulorum; nam minimum latus cum maximo coincidit. Rursus cum
            in triangulo minimo, scilicet bcd, recta a
            medietate lateris arcualis ducta ad medietatem alterius lateris
            arcualis minor sit medietate lateris rectilinei, erit maxime
            minor, quia minimus triangulus. Et cum recta ducta a medietate
            lateris arcualis ad medietatem alterius arcualis lateris in maximo
            triangulo, scilicet cbh, sit maior
            medietate lateris rectilinei (eo quod latera arcualia aequalia
            sint), erit ipsa recta ducta maxime maior, quia in maximo
            triangulo. Quo fit, ut in mediali triangulo et aequidistanti a
            maximo et minimo, in quo scilicet maximus et minimus coincidunt,
            recta a medietate lateris arcualis ad medietatem alterius lateris
            arcualis non sit nec maior nec minor medietate lateris rectilinei;
            quare talis medialis triangulus erit quaesitus.

            [image: link to parallel text] γ. Ad quem
            habendum divido arcum dh in duo aequa per
            punctum k et traho kc, factoque k centro
            circumduco kc, et ubi secat quadrantem
            occultum, pono i. Et posito uno pede
            circini in i puncto et alio in b moveo b usque k, et descriptus erit arcus bk, qui cum arcu quadrantis bc et recta kc describet
            triangulum quaesitum. Nam latus maius et arcuale est quadrans et
            concavum, quod cum alio arcuali et convexo, scilicet bk, eiusdem est circularis; latus vero tertium
            rectilineum est et aequale semidiametro circuli arcuum.

            [image: link to parallel text] δ. Cum enim cbh maximus triangulus movetur ad medium
            continue decrescendo, et bdc minimus ad
            medium continue crescendo movetur, ipsi in aliquo coincident
            triangulo, et non nisi in triangulo bkc,
            qui est quaesitus. Rursus dividatur cb
            latus arcuale in duo aequa in puncto f,
            similiter et bk aliud arcuale in puncto l, et fiat kc
            indefinitae quantitatis, et ducatur alia recta a puncto l per punctum f. Quia
            kc et fl non sunt
            aequidistantes, necessario in aliquo concurrent puncto, qui sit
            o; erit o punctus
            concursus linearum kc et fl. Unde erit lf ad kc sicut bl ad bk vel bf ad bc.

            ε[image: link to parallel text] . Et
            quotquot rectae a puncto concursus ductae dividentes duo latera
            arcualia, rectae cadentes inter ipsa ullam proportionem ad
            rectilineum latus servabunt, quam portiones laterum arcualium
            versus angulum b ad latera arcualia. Ut on, quae per p transit,
            et bp duae sunt tertiae de bc, erit pariter et nb
            ut duae tertiae de bk, et np ut duae tertiae de kc. Rursus oq, quae
            transit per r; et rb
            est ut una tertia de bc, erit pariter bq ut una tertia de bk,
            similiter qr ut una tertia de kc. Et hoc ideo, quia bkc triangulus aequidistans est a maximo,
            scilicet bhc, et minimo, scilicet bdc, in quibus est maxime plus et minus (ut
            dictum est); quare in isto mediali nec plus nec minus erit, cum in
            ipso maximus et minimus triangulus coincidant.

          
        
  De arithmeticis complementis

          [image: link to parallel text] 1. Nicolai de Cusa cardinalis ad Paulum physicum, optimum atque doctissimum virum, de
          arithmeticis complementis.

          Paule optime, pauca quaedam complementa de arithmeticis
          habitudinibus, quamvis tibi atque omnibus nota esse possint ex iis,
          quae in tractatu geometricarum transmutationum enodavi, a te
          corrigenda, impigre tamen ea subieci. Dico autem, quod coincidentia
          anguli et lineae in diversis polygoniis isoperimetris nos ducit ad
          circulum isoperimetrum, ut ostendimus in primo geometricarum
          transmutationum supposito. Hinc via nobis patet ea, quae ad
          complementum arithmeticae spectant, omni attingibili modo numerandi.
          Id autem, quod dico, principaliter hactenus ignoratum fuit, habitudo
          scilicet chordae ad arcum. In cuius notitia complementum illud
          consistit, qua scita nihil difficile manebit arithmetice
          numerandi.

          [image: link to parallel text] 2. Fuerunt viri diligentissimi, quorum princeps
          videtur Archimedes, qui ostenderunt circumferentiam circuli triplam in
          habitudine ad diametrum additis plus decem septuagesimis primis
          ipsius diametri et minus decem septuagesimis, et hanc propinquitatem
          praecisiorem continue fieri posse ostenderunt. Non tamen
          tradiderunt, ubi numero inattingibilis praecisio latitaret. Nam etsi
          non possit numerari costa numerato diametro quadrati, pertingitur
          tamen ad numerum, cuius radicem si numerari posset, scimus
          innumerabilem costam. Tale quid non repperi veteres aut scivisse
          saltem nobis tradidisse.

          [image: ]
Fig. 1
[image: link to parallel text] 3. Verum si hoc sciri poterit, artem ex iam
          traditis sic venari posse conicio et figuram ultimam, quam ibi
          posui, brevitatis causa hic praetermitto (cfr. figura 1). Constat autem,
          quoniam habitudo lateris hexagoni ad semidiametrum circuli
          circumscripti trigono isoperimetro in quadratis nota est, cum
          quadratum dg si est 4, quadratum lateris
          hexagoni isoperimetri, quoniam est medietas chordae subtensae
          tertiae parti circumferentiae eiusdem circuli, est ut tria. Notum
          est consequenter ed quadratum, quoniam si
          quadratum dg est 4, quadratum ed est 9, cum dg sit
          duplum ad ge. Sic erit fe nota, quia est latus hexagonicum, cuius
          quadratum est ut tria in habitudine, qua quadratum dg est ut 4; erit similiter ec sic nota. Sic erunt lineae ed et ef notae. Et quoniam
          trianguli egl et ecn
          sunt aequianguli, latera eandem tenent proportionem. Eadem ergo est
          proportio ge ad el,
          quae est ce ad en
          (cfr. figura 2).

          [image: ]
Fig. 2
[image: link to parallel text] 4. Inveniantur igitur duae quantitates, quarum
          maior se habeat ad eg sicut minor ad ec, sic quod subtracta maiori de ed et minori de ef
          remanentia sint aequalia. Remanens illud est semidiameter circuli
          isoperimetri polygoniae hexagonae vel trigonae, quae sunt
          isoperimetrae. Et quia habitudo peripheriae polygoniae ad de est nota habitudo semidiametri circuli
          isoperimetri ad de est nota, erit habitudo
          diametri ad circumferentiam omni scibili modo nota, ut scias, quid
          sit id quod quaeris, quod numerus non attingit, ut ignorantiam ac
          defectus rationis numerantis videat intellectus.

          [image: link to parallel text] 5. Palam ex his est posse omnem habitudinem
          quarumcumque chordarum ad arcum atque diametrum inquiri. Nam si loco
          hexagoni qualemcumque polygoniam receperis, omnia uti in hexagano
          posse attingi manifestum est. Et ut id ipsum intueamur, describamus
          semicirculum, cuius semidiameter sit ut semidiameter circuli
          circumscripti trigono, et tracta semidiametro ad medium arcus de g centro, quae sit dg,
          notato in arcu de d hinc inde arcum
          habitudinis ad circumferentiam secundum latera polygoniae, quae sunt
          chordae quaerendae (cfr. figura 3). Puta quod velis chordam 45 graduum, signabis arcum
          22 graduum cum I semis hinc inde a puncto d,
          et signa loca per s et t, trahendo semichordam de s versus t, quae in
          semidiametro dg terminata puncto v signetur. Et quoniam 45 gradus sunt octava
          circumferentiae, erit polygonia tot angulorum et laterum. Trahe
          igitur de g centro ad punctum s lineam. Deinde divide lineam rectam peripheriae
          polygoniae trigonae in 8 partes, et medietatem unius partis fac
          aequedistanter cadere ab sv inter gs et gd, et sit xy. Deinde describe arcum super g secundum semidiametrum xg, quousque pertingat in dg, notando per z punctum
          contactus arcus et semidiametri dg.

          [image: ]
Fig. 3
[image: link to parallel text] 6. Post haec describe quadrantes duos ut statim
          praemisi praecise faciendo ed semidiametrum
          aequalem semidiametro circuli trigono circumscripti et excessui eius
          super semidiametrum circuli inscripti eidem trigono, et ef semidiametrum secundi quadrantis, faciendo
          aequalem lineae gx sive gz cum zy, quae est linea
          excessus semidiametri circuli octogono isoperirmetro circumscripti
          super semidiametrum circuli eidem octogono inscripti. Et trahe
          chordam gh sic, quod gd sagitta sit circuli circumscripti trigono
          semidiameter, et aliam chordam ck ita, quod
          fc sit ut xg, scilicet
          semidiameter circuli circumscripti octogono.

          [image: link to parallel text] 7. Trahe deinde lineam de e
          ad circumferentias, cuius portiones inter arcus et suas chordas
          aequentur, ut praemisi, quae in locis sectionum notentur ut prius
          per lm et no. Deinde
          inquire, ut ef tibi nota fiat. Nota est ed, ut praemittitur. Et nota est lm, cui aequatur no. Nota
          est el et eg, hinc
          etiam habitudo el ad eg et en ad ec. Cum ergo no sit nota,
          inquiramus lineam en, et supponatur esse
          quaecumque quantitas. Per cuius suppositionem necessario etiam
          secundum notam habitudinem quantitas ec nota
          erit. Et si vera est quantitas en, quam
          supposui, sic examino ef. Secundum
          suppositionem eo nota erit, sic et cf. Subtrahatur de quadrato cf sive gx quadratum xy, quae est nota, et radix residui erit gy. Sic erit nota zy. Quae
          si fuerit ut ec, recte supponebatur. Si non,
          corrigatur error, et surget quaesitum.

          [image: link to parallel text] 8. Tali via omnes chordae notae erunt, quod veteres
          summo studio quaerentes attingere non potuerunt. Omnes hactenus
          praecisionem chordae gradus unius, duorum, quattuor, octo et sic
          deinceps, ut nosti, se ignorasse fatentur. Poterit etiam ignoti
          trianguli laterum et angulorum habitudo ex scientia habitudinis
          arcuum et chordarum et omne tale scibile sufficienter venari ex his
          dictis complementis.

          [image: link to parallel text] 9. Praeposita figura, quae de trigono in primo
          praesupposito praemittitur, alium describo super a centro circulum, cuius semidiameter sit ut
          semidiameter circuli circumscripti hexagono isoperimetro cum
          excessu, quo excedit semidiametrum circuli eidem hexagono inscripti
          (cfr. figura 4).
          Et trahe diametros se in centro orthogonaliter secantes, qui per b, c, d, e signentur, tracta chorda, cuius
          sagitta sit semidiameter circuli hexagono circumscripti, quam signa
          per fgh. Trahe deinde lineam per a punctum et per lineam gh, ut habeas semidiametrum circuli circumscripti
          hexagono isoperimetro, quae sit aik. Deinde
          nota excessum cb prioris figurae super ab istius, et eo in lineam per a tractam notato anterioretur, qui sit la, et rectam de l super
          ad orthogonaliter ducito posito m signo in contactu. Et quia cb secundum positionem lateris trigoni circulo
          inscripti est nota, similiter ab est nota,
          erit la et ag nota.
          Habet autem se la ad am sicut ai ad ag, et sicut la ad ai, ita ma ad ag. Inveniatur igitur numerus, qui se habeat in
          aliqua habitudine ad la notum, ita quod in
          eadem habitudine sit alius se habens ad ag
          notum taliter, quod la cum hoc numero invento
          de bc subtracto idem remagneat cum eo, quod
          remanet subtracto ag cum alio numero de ab, et numerasti semidiametrum circuli, lateris
          igitur trigoni tripla et semidiametri dupla habitudine considerata,
          ut sic propinquitate subtili habitudinem diametri ad circumferentiam
          attingas.
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Fig. 4

  De circuli quadratura Nicolai de Cusa
              Cardinalis

              
          [image: link to parallel text] 

          1. Asseris te in varietate scribentium de
          circuli quadratura involutum et a me nunc otio dato exigis, ut
          scibilis illius sufficientiam tradam. Accipe per propositionem, quid
          sentiam. Hoc tamen me fecisse sic tui causa recipito, ut per huius
          assimilationem mathematicis relictis facilius ad theologiam te
          transferre queas.

          
            Propositio

            [image: link to parallel text] 2. Si datae peripheriae trigoni est dabilis
            aequalis peripheria circuli, tunc illius circuli semidiameter in
            quinta sui parte excedit lineam ductam de centro trigoni ad
            punctum unum alicuius lateris ab angulo per quartam partem lateris
            distantis.

            [image: link to parallel text] 3. Sunt qui circuli quadraturam admittunt. Et hi
            habent necessario admittere circulorum peripherias aequari posse
            peripheriis polygoniarum figurarum, cum circulus aequetur
            quadrangulo, cuius minus latus est semidiameter et maius
            semicircumferentia. Quando igitur quadratum aequale circulo in
            tale quadrangulum resolveretur, haberetur recta linea curvae
            aequalis. Hinc deveniretur ad aequalitatem peripheriarum circuli
            et polygoniae, ut est de se notum.

            [image: link to parallel text] 4. Illi etiam hoc argumentum admittunt, sine quo
            nihil attingerent, scilicet: Ubi est dare magis et minus, est et
            dare aequale; quia, cum detur quadratum maius circulo, ut est
            circumscriptum, et minus, ut est inscriptum, igitur et aequale,
            quod erit nec circumscriptum nec inscriptum, sed pariter
            inscriptum et circumscriptum. Hoc idem argumentum admittunt in
            peripheriis: Quia est dabilis peripheria circuli maior peripheria
            trigoni, ut est peripheria circuli trigono circumscripti, et
            dabilis est peripheria circuli minor peripheria trigoni, ut est
            peripheria circuli inscripti, igitur est et dabilis peripheria
            circuli aequalis peripheriae trigoni, et hic circulus nec est
            circumscriptus nec inscriptus, sed pariter circumscriptus et
            inscriptus.

            [image: link to parallel text] 5. Sunt et qui circuli quadraturam negant, et hi
            omnia iam dicta negant. Aiunt enim argumentum in mathematicis non
            procedere: Ubi est dare magis et minus, quod ibi sit dare aequale.
            Nam dabilis est angulus incidentiae maior recto et alius minor
            recto, et tamen numquam aequalis. Unde in quantitatibus
            incommensurabilibus hoc non procedit. Si enim daretur angulus
            incidentiae maior recto parte aliquota recti et minor recto parte
            aliquota recti, daretur et aequalis. Sed cum angulus incidentiae
            non sit proportionalis recto, non potest esse aut maior aut minor
            parte aliquota recti, igitur neque umquam aequalis. Et cum inter
            superficiem circularem et rectilinealem non possit cadere
            proportio, sicut nec inter angulum incidentiae et angulum rectum,
            igitur argumentum etiam ibi non procedit.

            [image: link to parallel text] 6. Hoc sic patet: Omnis quantitas in aliam
            resolubilis necessario sic se habet, quod quaelibet eius pars
            possit esse pars alterius, cum totum non sit nisi suae partes. Sed
            lunula per rectam de circulo abscisa non est secundum angulos suos
            incidentiae, qui sunt partes quantitatis eius, in rectilineam
            resolubilis; igitur nec secundum eius totalitatem. Manifestum est
            autem, si circulus est resolubilis in quadratum, necessario sequi
            lunulas resolubiles in rectilineales; et cum hoc sit impossibile,
            igitur et illud, ex quo sequitur. Sic patet semicirculum non esse
            rectilineabilem, et per consequens nec circulum aut aliquam eius
            partem.

            [image: link to parallel text] 7. Omnis angulus incidentiae excedit alium aut
            exceditur ab alio per quantitatem anguli rectilinei, ad quem non
            potest habere proportionem. Hinc evenit, quod omnes abscisiones
            circuli per lineas rectas sunt ad illum penitus improportionales,
            et cum maior abscisio sit per [semi] diametrum, tunc omnes aliae
            abscisiones ad illam sunt improportionales. Non potest igitur
            aliqua pars circuli per tales lineas abscindi, quando nullam habet
            proportionem ad maiorem abscisionem, scilicet semicirculum. Sic
            non valet argumentum: Abscinditur lunula maior tertia circuli et
            lunula minor tertia parte circuli, ergo et aequalis. Ex quo
            evenit, quod abscisiones, quae fiunt per rectam lineam minorem
            diametro, non sunt ex eo nequaquam rectilineabiles, quia sunt
            partes aliquotae circuli, sed quia sequeretur circuli quadratura,
            si forent rectilineabiles.

            [image: link to parallel text] 8. Ex quo elice omne id impossibile, ex quo
            sequitur circuli quadratura. Habet igitur circulus hoc ex
            singularitate sua, quod sicut angulus incidentiae non est
            rectilineabilis, sic nec circulus est in figuram rectilinealem
            reducibilis. Sed sicut datur angulo incidentiae angulus
            rectilineus maior per angulum contingentiae, qui angulus
            contingentiae est quantitas in suo genere tantum divisibilis,
            quoniam omni angulo contingentiae est dabilis alius contingentiae
            maior ac minor, tamen, cum angulus contingentiae sit minor omni
            angulo rectilineo, sic dato incidentiae datur rectilineus maior,
            qui tamen non est maior aliqua parte aliquota rectilinei anguli;
            sic dato rectilineo datur incidentiae angulus minor, scilicet
            quantum est angulus contingentiae, qui tamen non est pars aliquota
            incidentiae, sed minor omni parte aliquota eius.

            [image: link to parallel text] 9. Tali quidem modo dici potest dato circulo
            posse dari quadratum, quod etsi fuerit maius circulo, non tamen
            aliqua parte aliquota eius, scilicet quadrati; et dato quadrato
            potest dari circulus minor eo, non tamen minor parte aliquota
            circuli. Et consequenter ex hoc habetur, quod licet dato circulo
            posset dari quadratum maius, non tamen parte aliquota eius maius;
            et quod quocumque quadrato tali dato adhuc possit dari aliud
            praecisius circulo, licet nullum praecisissimum, et nullum minus
            circulo parte aliquota eius, ita et e converso.

            [image: link to parallel text] 10. Et hanc partem puto veriorem. Nam cum figurae
            polygoniae non sint eiusdem generis quantitatis cum figura
            circulari, tunc, etsi reperiatur una polygonia dato circulo quoad
            quantitatem aequalior quam alia, habebit tamen regula locum: In
            recipientibus maius et minus non deveniri ad maximum simpliciter
            in esse et posse. Capacitas enim circularis est quod maximum
            simpliciter in comparatione ad capacitates polygoniarum, quae
            recipiunt maius et minus et ideo eam non attingunt, sicut numeri
            non attingunt capacitatem unitatis et multiplicitates non
            attingunt virtutem simplicis.

            [image: link to parallel text] 11. Sufficere autem videbatur primam opinionem
            tenentibus, quod dato circulo posset dari quadratum, quod non
            esset nec maius nec minus circulo. Omne enim maius aut est parte
            aliquota aut sui aut alterius, cui comparatur, maius; sic, si
            minus. Sed cum quadratum, quod datur, neque minima dabili parte
            aut quadrati aut circuli est circulo aut maius aut minus, hoc
            vocarunt aequale. Eo enim modo ceperunt aequale, ut scilicet id
            sit alteri aequale, quod nulla parte aliquota, quantumcumque
            minima, aliud excedit aut exceditur. Sic aequale capiendo puto
            verum esse, quod datae peripheriae polygoniae dabilis sit
            peripheria circuli aequalis et e converso. Capiendo vero
            aequalitatem absolute, prout respicit quantitatem, absque respectu
            ad partes aliquotas, tunc, quia circulari quantitati non potest
            non circularis praecise aequalis assignari, secundi verum
            dixerunt, et hoc per declarationem principii propositionis,
            scilicet: Si datae peripheriae trigoni etc. Sic dixisse sufficiat.
            Per quae intelligas ea, quae de hac re in certis aliis libellulis
            meis varie scripta reperies.

          
          
            Declaratio propositionis

            [image: link to parallel text] 12. Ad declarandum autem propositionem fiat
            trigonus abc, cui inscribatur circulus
            super d centro, qui sit efg, et circumscribatur circulus hi; ducaturque linea de
            sic, quod e sit punctus medius inter a et b, et ducatur linea
            db. Ducaturque linea de d ad punctum medium inter e et b, quae sit dk. Dico dk esse minorem
            semidiametro circuli isoperimetri trigono, quantum est quarta
            ipsius dk (cfr. figura 1).

            [image: ]
Fig. 1
[image: link to parallel text] 13. Addatur igitur quarta ad dk, et sit dl maior dk per quartam dk. Dico,
            quod dl est semidiameter circuli
            isoperimetri trigono. Describatur igitur circulus, qui sit lmn. Dico peripheriam lmn aequalem peripheriae abc, sic scilicet, quod lmn non est nec maior nec minor quacumque
            minima parte aliquota ipsius peripheriae abc.

            [image: link to parallel text] 14. Ad hoc ostendendum sic procedo et dico quod,
            si de d ad eb linea
            duci debet, quae sit semidiameter circuli isoperimetri trigono,
            oportet, quod illa se habeat ad omnia latera trigoni simul sumpta
            sicut semidiameter circuli ad circumferentiam. Sed cum
            semidiameter ad circumferentiam nullam penitus habeat
            proportionem, nec in quantitate nec in potentia, scilicet cum area
            quadrati semidiametri, quae est potentia semidiametri, nullam
            habeat proportionem ad aream circuli, neque etiam ad aream
            quadrati potentiae lineae aequalis circumferentiae, si dabilis
            foret, proportionem haberet. Patet, quod nec quaesitae lineae
            quantitas aut potentia esse potest proportionalis lineae de aut db, quarum
            potentiae sunt proportionales ad potentiam eb. Unde linea illa non potest duci de d ad partem aliquotam eb
            aut aliquotam db, sic quod punctus
            terminalis eius, qui distabit ab e versus
            b, non poterit distare per lineam ab e, quae sit proportionalis ad eb vel db; quia, si sic,
            semper esset potentia proportionalis eb, ut
            de se patet. Unde non est assignabilis punctus in eb, ad quem si duceretur, haberetur praecise
            quaesita. Sed bene est punctus in eb, ad
            quem si duceretur, linea illa non foret nec maior nec minor parte
            aliquota quacumque minima quaesita. Dico consequenter, quod, sicut
            nulla linea, quae de d ad eb duci potest ad partem aliquotam eb, potest esse quaesita, sic etiam nulla talis
            potest esse proportionalis ad quaesitam, ut de se patet, cum
            omnium illarum potentiae sint potentiae lineae eb proportionales.

            [image: link to parallel text] 15. Dico deinde, quod licet nulla talium sit
            praecise proportionalis quaesitae, una tamen erit magis
            proportionalis quam alia. Et hoc patet. Nam etsi omnes sint
            improportionales ad de et eb, tamen adhuc una est magis proportionalis ad
            eb et db quam alia,
            et ideo minus proportionalis ad quaesitam. Unde illa ex omnibus,
            quae est maxime improportionatis ad eb, de
            et db, illa est minime improportionalis ad
            quaesitam. Una igitur erit inter omnes ducibiles de d ad partes eb minus
            improportionalis quaesitae.

          
          
            De adinvestigando proportionalem

            [image: link to parallel text] 16. Ad investigandum vero proportionalem est
            advertendum, quod inter lineas improportionales habent se aliquae
            ut costa et diameter, et numquam potest proportio adeo praecisa
            reperiri, quin sit excessus maior parte aliquota: ut una decima
            diametri minor est una septima costae, et excessus est maior parte
            aliquota diametri et costae, et ita in quibuscumque minimis
            partibus.

            [image: link to parallel text] 17. Alia est improportio ut angulorum incidentiae
            et rectilinei. Nam linea se habens ut angulus incidentiae est
            improportionalis ad lineam se habentem ut angulus rectilineus, et
            medietas rectilinei est maior medietate incidentiae per
            quantitatem medietatis contingentiae; quae tamen medietas minor
            est omni parte aliquota, tam rectilinei anguli quam
            incidentiae.

            [image: link to parallel text] 18. Quod autem talis habitudo sit reperibilis in
            lineis, ex hoc videtur: Nam cum angulus sit superficies et linea
            sit terminus superficiei, patet, quod eo modo, quo angulus
            contingentiae est superficies divisibilis, sic suo modo et eius
            terminus, scilicet linea angulum illum superficialem terminans.
            Similiter linea terminans anguli rectilinei superficiem linea est
            divisibilis secundum divisibilitatem superficiei. De linea igitur,
            quae terminat superficiem anguli rectilinei, potest abscindi linea
            terminans angulum contingentiae, et ideo linea terminans angulum
            incidentiae est improportionalis ad lineam terminantem angulum
            rectilineum per lineam terminantem angulum contingentiae. Unde cum
            haec linea terminans angulum contingentiae sit minor omni parte
            aliquota lineae rectilineum aut incidentiae angulum terminantis,
            patet propositum.

            [image: link to parallel text] 19. Et in hoc notare poteris, quomodo ante omnem
            divisibilitatem lineae rectae est linea inattingibilis per omnem
            divisibilitatem, qua linea recta rectam secare potest. Quae tamen
            etsi non sit divisibilis divisione, qua linea recta per rectam
            dividitur, in cuius respectu est ut punctus terminalis
            inattingibilis, est tamen suo modo per curvam divisibilis. Unde
            linea illa, quoniam est terminus superficiei, et divisibilis linea
            dicitur, licet in comparatione ad lineam, quam terminat punctus,
            indivisibilis appareat. Sicut enim divisibilitas superficiei
            terminatur in linea, quae in respectu ad superficiem est
            indivisibilis, quoniam non est superficialiter divisibilis, tamen
            linea ipsa terminalis superficiei in se considerata quantitas
            divisibilis est, ita divisibilitas rectae lineae per rectam
            terminatur in punctum, qui est terminus divisionis et lineae, et
            est rectilinealiter indivisibilis in quantum terminus lineae, in
            se tamen est quantitas divisibilis. Est igitur possibile unam
            lineam esse alia minorem aut maiorem, non tamen aliqua parte
            aliquota aut maiori aliquota, sed minori. Ex quo elicere potes,
            quid de lineis et punctis indivisibilibus sentiendum.

            [image: link to parallel text] 20. Dico igitur, quod etsi possit de d ad eb linea
            proportionalis ad quaesitam trahi, ita quod excessus non sit maior
            parte aliquota, non tamen potest trahi talis, quin excessus sit
            licet minor parte aliquota. Deinde dico, quod etsi innumerabiles
            tales trahi possent, tamen una praecisior alia, nulla vero
            praecisissima.

            [image: link to parallel text] 21. Videamus igitur, quam talium potest humanum
            ingenium de omnibus attingere. Manifestum est autem, quod si
            linea, quae debet esse proportionalis quaesitae, extenditur
            secundum quamcumque partem eius aliquotam, puta tertiam eius aut
            quartam aut aliam, semper manet proportionalis. Si igitur linea
            ipsa extenditur secundum habitudinem lineae, quae cadit inter
            terminum eius in eb et e, ad lineam ab aut
            secundum habitudinem lineae inter terminum eius in eb et b ad lineam ab, semper manet proportionalis. Aut igitur
            habitudines illae sunt tales, quod secundum aliquam ipsarum
            devenitur ad quaesitam, aut non. Si non, tunc per ipsam lineam,
            quam praesupponimus proportionalem ad quaesitam ignotam, nihil de
            quaesita scire poterimus. Nam cum quaesita sit ignota et extensio
            non ducat nos ad eam, sed ad maiorem vel minorem ea, quam
            ignoramus, non poterimus excessum scire quaesitae penitus
            ignotae.

            [image: link to parallel text] 22. Si dixeris per alteram extensionem ad
            quaesitam perveniri et non per ambas, idem erit, quia ignoramus,
            per quam et ubi linea illa cadat, cum de illis possint cadere
            infinitae inter e et b. Si dixeris aequales fore extensiones et
            tamen aut minores aut maiores quaesitae ignotae, iterum ad
            quaesitam numquam deveniretur.

            [image: link to parallel text] 23. Necesse est igitur proportionalem, per quam
            humanum ingenium hoc modo procedendi se iuvare potest, ut veniat
            ad quaesitam, eam esse, quae per ambas aequales extensiones sive
            unam sive aliam quaesitam ostendit; et haec est linea, quae
            ducitur de d ad medium inter e et b, puta f. Et haec est sola illa, quae per habitudinem
            unam, qua se habet altera linearum distantiae ab e vel b ad ab extensa, scilicet quartam sui, nos ducit ad
            quaesitam, modo quo sic procedendo est nobis possibile attingere,
            etiam si in aliis procedendi modis alia praecisior posset
            reperiri.

            [image: ]
Fig. 2
[image: link to parallel text] 24. Verum ne penitus hanc putes puram esse
            coniecturam, ita quod humanum ingenium nulla ratione alia ad hanc
            assertionem ducatur, facere poteris syllogismum, qui hoc casu
            extra ultimam praecisionem et citra differentiam minimae partis
            aliquotae admittitur (cfr. figura 2). Nam cum de d prope e linea, puta ad
            g, tracta et extensa secundum habitudinem
            eg ad ab sit minor
            quaesita, et similiter extensa secundum habitudinem gb ad ab etiam sit minor
            quaesita; et alia linea de d prope b, puta h, tracta et
            secundum habitudinem eh ad ab extensa sit maior quaesita, et similiter
            secundum habitudinem hb ad ab extensa sit maior quaesita, ut est hinc inde
            notorium: igitur est alia de d ad eb trahibilis, quae secundum lineae inter
            terminum eius et e cadentis habitudinem ad
            ab extensa non est maior nec minor
            quaesita. Et est similiter linea de d
            trahibilis ad eb, quae extensa secundum
            habitudinem lineae inter terminum eius et b
            cadentis ad ab non est maior nec minor
            quaesita. Sed quia illae duae lineae, ex quarum extensionibus
            quaesita evenire debet, non possunt esse diversae, cum diversae
            lineae de d ad eb
            trahibiles non possint habere aeque praecisam proportionem ad
            quaesitam, sed una semper erit praecisior alia: ideo nec extensae
            secundum varias habitudines suarum partium ad eas ad eandem
            quaesitam aequaliter attingere possunt. Necesse igitur erit, quod
            sit una tantum linea et extensio eadem, quod extra f punctum non est possibile. Quare omnis
            sufficientia, quae in hoc procedendi modo sciri potest, est illa,
            quae ponitur in propositione sic declarata.

            [image: link to parallel text] 25. Quoniam autem nunc tibi id, quod est scibile
            de aequalitate peripheriarum curvilinealium et rectilinealium
            figurarum, patefeci – scilicet, quomodo verius quod in hoc scitur
            est, aequalitatem sciri non posse, atque etiam quod id, quod
            propinquissime sciri potest in hoc, est per propositionem brevem
            revelatum –, tunc desiderio tuo, quantum potui, satisfeci. Nam
            scito hoc: Habes modum omne mathematice scibile investigandi.
            Omnis enim propositio in mathematicis, per quam sequitur praecisa
            aequalitas circuli et quadrati, est impossibilis, et omnis
            propositio, per cuius contrarium inferretur praecisio, est
            necessaria. Immo assero, quod qui in mathematicis scit omnem
            inquisitionem ad hoc reducere, perfectionem adeptus est artis
            illius. Nam nihil penitus in ea verum est, ex cuius opposito non
            sequitur circuli et quadrati aequalitas, et haec est omnis
            mathematicae inquisitionis sufficientissima resolutio.

            [image: link to parallel text] 26. Id autem, quod sine praecisione citra tamen
            omnem sensibilem aut assignabilem errorem etiam minimae partis
            aliquotae sciri potest in transmutationibus figurarum et
            habitudinibus innumerabilibus, ex iam dictis etiam patefeci. Per
            quae habes, quomodo habitudo diametri circuli ad circumferentiam
            eius est ut duarum radicum numeri 1575 cum medietate unius radicis
            ad sex radices numeri 2700. Et licet non sit praecisissima, non
            tamen est nec maior nec minor per minutum aut minuti quamcumque
            dabilem partem. Unde sciri non potest, quantum a praecisione
            ultima deficiat, cum non sit communi numero attingibilis. Et hinc
            iste defectus non est reparabilis, cum non nisi alto intellectu et
            nequaquam sensibili experimento sit attingibilis. Scire ex solo
            isto nunc potes, quod in non scibili praecisius attingitur, quam
            scientiam hactenus traditam non repperi.

            [image: link to parallel text] 27. Attendere autem praeter hoc utile videtur,
            quod, uti hoc casu vides, per unum, puta quadratum, non attingi
            aliud, scilicet circulare, aut e converso adeo praecise, quin
            praecisius attingi possit, etiam si defectus nequaquam appareat.
            Ita in omni inquisitione veri, ubi per unum ad aliud sciendum
            pergimus, per notum scilicet ad ignotum, idem fore sentiendum,
            scilicet verum varie et differenter attingi citra praecisionem
            ultimam, quoniam per unum praecisius quam per alium, per nullum
            vero praecisissime, licet defectus non appareat; quoniam mensura,
            qua homo pergit ad veri inquisitionem, est vero improportionalis,
            et hinc ille, qui citra praecisionem quietatur, errorem non
            apprehendit. Et haec est differentia hominum, quoniam quidam se
            praecisionem attigisse iactant, quam sapientiores inattingibilem
            sciunt, ut hi sint doctiores, qui suae ignorantiae scientiam
            habent.

            [image: link to parallel text] 28. Admonebam in exordio, ut via assimilationis
            de his mathematicis ad theologiam te transferres, nam hic est
            convenientior modus ascendendi. Versantur enim mathematicae
            doctrinae in veris intelligentiis, quoniam figuras in sua veritate
            absque variabili materia considerant. Unde ad formam primam, quae
            est formarum forma penitus absoluta, illis figurarum
            multiplicitatibus inferius relictis quadam assimilatione facilius
            scanditur. Nam omnes theologi quandam quaerunt praecisionem,
            quomodo circularem aeternitatem, unissimam et simplicissimam,
            possint attingere. Sed vis infinita est incommensurabilis per omne
            non infinitum, sicut capacitas circularis per omnem non circulum
            incommensurabilis manet.

            [image: link to parallel text] 29. Sicut igitur circulus est perfectio figuralis
            omnem figurarum perfectionem in se complicans, sicut eius
            capacitas omnium figurarum capacitatem, et nihil commune habet cum
            omni figura alia, in se penitus simplex et una: sic aeternitas
            absoluta est forma omnium formarum in se complicans perfectionem,
            et eius vis omnipotens omnem vim formarum, omnem speciem ambiens,
            nihil tamen commune habens cum omni alia forma. Et quemadmodum
            circularis figura in eo, quia sine principio et fine, quandam
            habet assimilationem aeternitatis, et in sua capacitate, qua omnes
            omnium figurarum capacitates includit, quandam habet figuram
            omnipotentiae, et in sua connexione, qua circumferentia unitur
            capacitate, habet quandam figuram amorosissimi et infiniti nexus:
            ita quidem in essentia divina intuemur aeternitatem in se habentem
            omnipotentiam atque in his infinitum nexum. In aeternitate quidem
            intuemur principium sine principio, et hoc quidem principium
            paternum dicimus. In omnipotentia, quae est a principio sine
            principio, intuemur principium illimitatum a principio. In
            infinito nexu intuemur principii sine principio et principii a
            principio amorosissimum nexum. In hoc enim, quod in divina
            essentia intuemur aeternitatem, intuemur patrem. In hoc, quod in
            eadem essentia intuemur aeternitatis potentiam, quae non potest
            esse nisi infinita, cum sit potentia aeternitatis, principii
            scilicet sine principio, in hoc intuemur aequalitatem unitatis
            aeternae, scilicet filium patris. In hoc, quod intuemur aeternae
            unitatis et suae aequalitatis nexum amorosissimum utriusque,
            spiritum intuemur. In unitate igitur simplicissima aeternitatis
            vigorosissimam et omnipotentissimam aequalitatem intuemur, ac e
            converso in aequalitate unitatem, similiter et in nexu unitatem et
            aequalitatem. Sine aeternae entitatis unitate nihil esse potest.
            Sine illius unitatis aequalitate nihil sic esse uti est esse
            potest. Sine infinito nexu esse et simul sic esse uti est nihil
            esse potest. Sine unitrino igitur principio nihil esse potest.

            [image: link to parallel text] 30. Haec assimilantur in circulo, et eius
            capacitate atque strictissimo nexu, quo circulus est maxime sibi
            ipsi constrictus, cohaerens atque naturaliter unitus esse videmus.
            Post haec advertimus, quod cum omnes polygoniae figurae sint ex
            peripheria, capacitate et nexu ad imaginem circularis figurae, et
            omnis peripheria polygoniae sit cadens a peripheria circuli, et
            omnis capacitas polygoniae improportionabiliter deficiens a
            capacitate circuli, et similiter omnis nexus utriusque – quod sic
            etiam se habent species rerum sensibilium ad formam formarum, ut
            species harum sensibilium rerum sint in comparatione ad deum quasi
            ut trigoni, tetragoni, pentagoni et ita consequenter ad circulum
            comparati.

            [image: link to parallel text] 31. Quaelibet autem polygoniarum quandam habet
            diffinitam perfectionem, extra quam nec est nec esse potest.
            Trigoni enim esse extra triangularitatem nequaquam esse potest;
            ita de tetragono et ceteris. Quiescit igitur sic omnis species
            inter ambitum suum, qui sub sua clauditur peripheria, et extra
            ipsum nec esse potest nec appetit. Desineret enim omne esse
            trigonum, si in tetragonum pergeret, uti de se notissimum est.
            Unde ad interitum suum nulla species ex sua natura, qua habet esse
            et sic esse, moveri potest, quare in terminis suae specificae
            naturae quiescit. Et haec quies est sua, quia infra peripheriam
            suae perfectionis vim divinam suo habet modo, in qua amoroso nexu
            deliciatur.

            [image: link to parallel text] 32. Mensurat igitur omnis sensibilis species suo
            quodam modo aeternitatem, virtutem et nexum amoris infinitum,
            licet in mensurando nihil habeat proportionale, cum omnis
            polygonia multiangula sit diminutae virtutis et capacitatis, parvi
            nexus et unionis, quae ad circularem aeternitatis unitatem,
            capacitatem inexhauribilem ac infinitam connexionem nihil
            proportionis habere potest, etiam si omne id, quod habet, eo
            habeat modo, ut in triangulari aut tetragona natura virtus
            circularis potest participari. Haec est igitur habitudo specierum
            sensibilium ad formam formarum, quae est polygoniarum ad circulum.
            Deinde, cum multi sint modi essendi trigoni, quoniam alter est
            trigonus rectiangulus, alter acutiangulus, alter obtusiangulus,
            cadentque in singulis talibus varii essendi modi in variabili
            materia, et hi omnes modi sunt contractiones individuales. Species
            enim in se vere consideratae sic cadunt in variabili materia
            variabiliter. Nam trigonus verius figuratur et perfectius in auro
            quam aqua aut labili alia materia, et adhuc verius intelligitur
            quam figuretur in quacumque materia.

            [image: link to parallel text] 33. Unde ex hoc advertimus, quomodo omnes
            polygoniae possunt inscribi circulo ac quomodo in circulo sunt
            omnes meliori modo quam ut sunt in materia, quoniam ibi sunt
            circulus. Et in hoc videmus, si omnes polygoniae possunt inscribi
            circulo sensibili et circulus aeternitatis sit actus omnis
            possibilitatis, quod tunc, sicut omnes polygoniae possunt circulo
            sensibiliter inscribi, ita sunt actu omnes species in specie seu
            forma aeternitatis ipsa forma aeterna. Et sicut in nostra mente
            verius esse habet trigonalis forma quam in variabili materia, ita
            in aeterna mente seu verbo verius esse habent omnes rerum species,
            ubi sunt ipsa aeterna veritas, quam in individuali varietate.

            [image: link to parallel text] 34. Adhuc progredientes advertimus circulorum
            varietatem, quodque non potest esse nisi unus maximus, verissimus,
            in se subsistens, aeternus et infinitus circulus, ad quem per
            circulos quantos non ascenditur, quoniam in recipientibus magis et
            minus non devenitur ad maximum simpliciter. Et circa hunc
            infinitum circulum mira et indicibilia consideramus, quae alibi
            diffusius tacta sunt.

            [image: link to parallel text] 35. Unde dicimus esse naturas circulares, quae
            non possunt esse sui ipsius principium, quia non sunt ut circulus
            maximus simpliciter, qui solus est ipsa aeternitas. Alii autem
            circuli, licet non videantur habere principium et finem, prout
            considerantur via abstractionis a sensibili circulo, tamen, quia
            non sunt ipsa infinita aeternitas, tunc sunt circuli, quorum esse
            est ab ipso infinito primo aeterno circulo, et sunt circuli illi
            in comparatione ad polygonias eis inscriptibiles quasi aeternitas
            quaedam atque simplicitas perfecta. Habent enim capacitatem
            improportionabiliter excedentem capacitatem omnium polygoniarum,
            et sunt infiniti circuli primi prima imago, licet ob infinitatem
            primi sint ad ipsum incomparabiles. Et sunt naturae, quae habent
            motum quendam circularem et infinibilem circa essentiam infiniti
            circuli, in se vim omnium aliarum specierum complicantes et ex sua
            vi complicativa via assimilationis alias omnes species
            explicantes, et in se omnia intuentes atque se imaginem infiniti
            circuli contemplantes per ipsamque imaginem, hoc est se ipsas, ad
            veritatem aeternitatis seu exemplar ipsum elevantes. Hae sunt
            naturae intellectuales vi sua intellectuali cuncta ambientes.

            [image: link to parallel text] 36. Conantur autem omnes figurae, quantum
            possunt, capacitatem aeternae veritatis mensurare. Sed sicut
            finiti ad infinitum nulla est proportio, sic manet deus super
            omnem inquisitionem praecisio incognita, ut ipse sit non solum
            incognitus, sed ipsa praecisio incognita, quae in nullo
            cognoscibili cognoscitur. Nititur enim quaelibet creatura deum
            suum intra limites suae naturae definire; sicut si trigonus vellet
            circulum trigonare et tetragonus tetragonare, et ita de
            polygoniis, sic et natura intellectualis intelligere. Sed quamvis
            deus ipse, qui non habet partes, cum sit simplicitas infinita, non
            sit parte aliquota excedens omnem mensurandi modum specifice
            varium, tamen sic excedit omnem magnitudinis mensuram, quod est
            omni inquisibili modo maior. Et sic excedit omnem subtilium
            mensurarum, minutissimas fractiones, eo quod est omnium talium
            fractionum subtilior, ut neque in ascensu neque descensu praecisio
            eius attingi possit.

            [image: link to parallel text] 37. Sufficit autem omni naturae, quod in sua
            specie deum modo, quo potest, attingat. Tunc enim quiescit, quando
            extra speciem suam eum nec quaerit nec esse apprehendit.
            Sufficientia igitur, qua ipsum in sua specie modo, quo potest,
            attingit, est quies eius, quoniam est satietas motus suae
            naturae.

            [image: link to parallel text] 38. Quod nobis assimilatorie declarat
            investigatio, quam fecimus in trigono, quem ad aequalitatem
            peripheriae circuli elevare studuimus. Et quievimus in modo uno,
            quem solum praecisiorem, licet deficientem, repperimus in
            trigonali elevatione ad aequalitatem circularem. Qui modus speciei
            tetragonali non conveniret; tamen, si suo modo ad aequalitatem
            circuli ascenderet, etiam si non foret praecisio, dummodo in sua
            specie alius perfectior non foret tetragonus, se quietem attigisse
            gauderet. Ita de ceteris.

            [image: link to parallel text] 39. Sic quietatur omnis intellectus, si modo, quo
            suae speciei conceditur, se senserit ad aequalitatem infinitatis
            elevari divina praecisione semper inaccessa remanente. Talia
            quidem et alia infinita per te elicere poteris. Haec sic tetigisse
            sufficiat. Amen.

          
        
  Quadratura circuli Nicolai de Cusa
              cardinalis, legati, episcopi brixinensis

              
          [image: link to parallel text] 

          1. Quamvis iam dudum a studio geometrico nos
          altior speculatio ac publica retraxerit utilitas, tamen inter
          innumeras seriosas curas, quas habet apostolica legatio, se inter
          colloquia studiosorum delectabiliter immiscuit de quadratura circuli
          scibili et non scita assertio, quam dum nuper equitando
          revolveremus, quod attigimus, conscripsimus.

          [image: link to parallel text] 2. Non legimus quemquam propinquius accessisse ad
          huius notitiam quam Archimedem, qui primo quadrangulum circulo aequari ostendit, in quo
          semidiameter circuli ducta est in mediam peripheriam. Hoc quidem sic
          esse necesse est, si hoc censendum est: esse aequale, quod nec maius
          nec minus esse convincitur. In omnibus enim polygoniis isopleuris et
          isoperimetris, de quibus solum in hoc scripto loquimur, semidiameter
          circuli inscripti si ducitur in medietatem peripheriae, oritur
          quadrangulum aequale. Posse autem inter semidiametrum et medietatem
          peripheriae medium proportionale facile constitui Euclides ostendit. Quare tale cum sit latus quadrati
          aequivalentis, conscito quae linea recta aequetur peripheriae
          circuli, scitur et eius quadratura, et haec est certior ostensio.
          Sed dum per helicam hanc ultimam partem se reperisse crederet
          Archimedes, a vero defecit. Helica enim describi nequit nisi signum
          a centro per semidiametrum in tanto tempore moveatur, in quanto
          semidiameter pro circuli descriptione circumvolvitur. Descriptio
          igitur helicae hos motus supponit, quorum habitudo est ut
          semidiametri ad circumferentiam. Praesupponit igitur id, quod
          quaerit. Citius enim recta dari potest circulari lineae aequalis
          quam helica vera figurari.

          [image: link to parallel text] 3. Nos autem considerantes trigonum et circulum in
          capacitate extrema loca tenere: in trigono semidiametros circulorum,
          et inscripti et circumscripti, contrario modo se habere cum
          semidiametro circuli, in quo circuli inscriptus et circumscriptus
          coincidunt, qui differunt in trigono maxime, esseque ibi
          semidiametrum circumscripti maximam et inscripti minimam et simul
          iunctas brevissimas; contrario modo in circulo, ubi simul iunctae
          sunt diameter circuli maximae. Ob hoc scimus omnes medias polygonias
          isoperimetras et isopleuras secundum capacitatem in illis ad
          aequalitatem semidiametri circuli accedere. Si igitur signata fuerit
          quantitas excessus semidiametri circuli super semidiametrum
          inscripti trigono et quantitas, qua ipsa semidiameter circuli fuerit
          minor semidiametro circumscripti trigono, tunc omnis polygonia media
          secundum suam capacitatem in excessu semidiametri sibi inscripti
          super semidiametrum inscripti trigono et diminutione semidiametri
          sibi circumscripti a semidiametro circumscripti trigono
          proportionaliter se habebit. Nam cum illa ex diversa capacitate
          varientur, non potest diversa esse habitudo illorum ab habitudine
          capacitatum. Sic semper necesse est, quod sicut se habet excessus ad
          excessum, etiam sic se habeat diminutio ad diminutionem, cum
          capacitas ita sequatur unam diversitatem sicut aliam, et non plus
          nec minus unam quam aliam. Erunt igitur in omnibus polygoniis
          excessus et diminutio tales se ad invicem habentes in proportione
          una. Quare data una habitudine per illorum scientiam in nota aliqua
          polygonia tunc scitur et in circulo. Et quia excessus et diminutio
          in circulo simul iuncti aequantur semidiametro inscripti trigono, ut
          de se patet, igitur si reperta habitudine divideretur secundum eam
          semidiameter inscripti trigono et maior portio adderetur ad ipsam
          semidiametrum circuli inscripti trigono, haberetur semidiameter
          circuli isoperimetri et ita omne quaesitum.

          
          [image: link to parallel text] 4. Faciemus autem hanc partem tibi hoc modo
          clariorem (cfr. figura 1). Ex ab linea in tres partes
          divisa cde triangulus designetur, et in eius
          latere cd signetur pars quarta ab, quae sit ik, quae
          quadretur, et sit iklm. Describantur
          inscripti et circumscripti circuli, et sit inscripti trigono
          semidiameter fg et circumscripti fh et inscripti tetragono ng, circumscripti no.
          Signetur deinde linea fh et in eius medio g. Lineis de f, g, h tractis quantumlibet
          trahatur ad fh aequedistans tn, cuius medium sit aa,
          et signetur semidiameter inscripti alicuius polygoniae
          isoperimetrae, puta tetragonae, quae sit np,
          et semidiameter circumscripti, quae sit no.
          Et trahe de g per p
          ‹lineam› in infinitum et similiter de h per
          o lineam in infinitum, et ubi illae
          concurrunt, signa q. Trahe per q aequedistantem ad fh,
          quae sit sr, in cuius medio signa bb. Dicimus rq esse
          semidiametrum circuli quaesiti et eius circumferentiam aequalem ab lineae rectae.

          [image: ]
Fig. 1

          [image: link to parallel text] 5. Multipliciter probatur et faciliter. Servata
          igitur priori figura ponatur g bb lineam esse
          differentiam capacitatum trigoni et circuli isoperimetri et quod
          linea de rs moveatur versus fh
          aequedistanter. Manifestum est lineas hq et
          gq de illa abscindere omnes differentias
          semidiametrorum circulorum inscriptorum et circumscriptorum omnium
          figurarum polygoniarum de trigono usque ad circulum, ubi coincidunt.
          Est etiam manifestum, quod simul linea illa mota abscindet de linea
          bb g omnes differentias capacitatum inter
          trigonum et circulum. Nam quanto differentia semidiametrorum
          dictarum est minor, tanto figura capacior, ideo circulus capacissima
          figurarum, quia ibi coincidunt, et trigonus minimae capacitatis,
          quia ibi maxime differunt. Sit igitur linea mota tn, quae abscindat lineam g
          bb in aa puncto, et sit po differentia semidiametrorum in tetragono.
          Quare si g bb est ut differentia capacitatum
          trigoni et circuli isoperimetri, erit g aa ut
          differentia capacitatum trigoni et tetragoni. Et quia np est ex praesupposito semidiameter inscripti
          tetragono et aa p excessus eius super fg semidiametrum inscripti trigono, ideo bb q erit excessus semidiametri circuli
          isoperimetri super semidiametrum inscripti trigono. Nam quae
          proportio bb g ad aa
          g, illa bb q ad aa
          p, ut notum est. Correspondent autem differentiae
          semidiametrorum inscriptorum in polygoniis isoperimetris cum
          differentiis capacitatum. Non enim evenit aliunde capacitatum
          differentia in isopleuris et isoperimetris nisi ex semidiametrorum
          circulorum inscriptorum differentia, quoniam capacitas ex
          multiplicatione illius semidiametri, quae variatur in diversis
          talibus figuris, in semiperipheriam, quae semper est eadem,
          exoritur, ut est notum. Sic si posueris bb s,
          lineam duorum excessuum semidiametrorum, ut excessum capacitatis
          circuli super trigonum, erit in tetragono excessus talis capacitatis
          ut linea aequalis duabus to et p aa lineis, et quia una est habitudo illius ad
          s bb quae p aa ad bb q, igitur ut supra. Vel si dixeris capacitatem
          trigoni minorem esse quam circuli, ut linea hg, erit tetragoni minor ut po.

          
          [image: link to parallel text] 6. Si adhuc negaveris et dixeris semidiametrum
          circuli minorem esse, puta quod terminetur in puncto medio inter s et terminum lineae g,
          quae sit v, ita quod rv sit semidiameter circuli isoperimetri, tunc si
          sic extendatur vs, quousque aequetur rv, et sit rx, et
          similiter extendatur fh ad aequalitatem rx, et sit fz ut rx; trahe zx lineam,
          deinde trahe de v lineas ad g et h, et ubi secaverint
          tn lineam, signa 2 et
          9, et tn extendatur
          usque ad zx, et sit cc
          n ut rx (cfr. figura 2). Dico, quod si
          semidiameter inscripti circulo isoperimetro addit super
          semidiametrum inscripti trigono, quantum est bb
          v, tunc semidiameter inscripti tetragono addit, quantum est aa 2. Igitur si semidiameter inscripti tetragono
          addit, quantum est aa p, tunc semidiameter
          circuli isoperimetri addit, quantum est bb q.
          Hoc de se patet, si habitudo additionum est ut bb
          v ad aa 2, et
          nota est additio in tetragono, quae est ut aa
          p; igitur erit in circulo ut bb q, cum
          una sit habitudo aa p ad bb
          q quae aa 2 ad bb
          v.
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Fig. 2

          [image: link to parallel text] 7. Quod autem illa sit habitudo, probatur. Nam si
          rv ponatur semidiameter inscripti circulo,
          erit vx semidiameter circumscripti, quae
          coincidunt in circulo isoperimetro. Et manifestum est, quod rx est linea ex duabus illis semidiametris, et
          similiter fz est linea illi aequalis et est
          ex semidiametro inscripti trigono et semidiametro circumscripti
          eidem. Omnium igitur polygoniarum inter trigonum et circulum duae
          semidiametri tales non erunt minores fz nec
          maiores rx et ita semper aequales. Erit
          igitur n cc aequalis duabus illis
          semidiametris in tetragono. Et quia 2 9
          aequatur necessario po, cum ghq triangulus aequetur ghv ob aequedistantiam qv
          et gh et similiter o 2
          sit aequedistans ad gh, hinc 9 2 erit ut po, ut ex
          Euclide scilicet 37a primi et 4ta sexti notum tibi existit. Sed
          po est excessus semidiametri circumscripti
          tetragono super semidiametrum inscripti eidem, igitur et 2 9. Et cum n 2 aequetur
          cc 9, igitur n 2 erit
          ut semidiameter inscripti tetragono et 2 cc
          ut semidiameter circumscripti eidem. Si igitur ponitur semidiametrum
          circuli super semidiametrum inscripti trigono addere, quantum est
          bb v, addet necessario semidiameter inscripti
          tetragono, quantum est aa 2. Et hae
          additiones possent capacitates super capacitatem trigoni nominari,
          cum in isopleuris et isoperimetris capacitatum excessus ex his solum
          proveniat. Habitudo igitur additionum erit ut aa
          2 ad bb v, quod erat probandum. Et ita
          in omnibus polygoniis pariformiter procedi poterit sicut in
          tetragono. Ex hoc constat propositum (cfr. figura 3).

          [image: ]
Fig. 3
[image: link to parallel text] 8. Adhuc aliter. Capacitas circuli super
          capacitatem trigoni est maxima et differentia semidiametrorum
          circulorum inscripti et circumscripti est nulla seu minima
          simpliciter, quia minor esse nequit. Sed differentia semidiametrorum
          circulorum inscripti et circumscripti trigono est maxima, capacitas
          vero eius super sui ipsius capacitatem est nulla vel minima
          simpliciter. Esto igitur, quod aliqua linea sit ut differentia
          semidiametrorum in trigono et etiam sit ut capacitas circuli super
          trigonum, quae sit ab linea (cfr. figura 4). Quadretur igitur
          illa et sit quadratum abcd, et sit ab ut differentia semidiametrorum cum illa minima
          capacitate trigoni super sui ipsius capacitatem, et cd capacitas circuli super trigonum cum illa
          minima differentia semidiametrorum talium, et trahatur linea
          diametralis bc. Dico in omnibus polygoniis
          mediis inter trigonum et circulum lineas capacitatis super
          capacitatem trigoni cum differentia semidiametrorum non posse esse
          maiores nec minores ab aut cd, ut de se patet. Esto igitur, quod trahatur
          ef linea aequalis et aequidistans ad ab et cd, et illa secetur
          per bc in puncto g, et
          sit ge ut differentia semidiametrorum talium
          in tetragono. Manifestum est, quod gf erit ut
          capacitas tetragoni super trigonum. Erit igitur habitudo capacitatis
          tetragoni super capacitatem trigoni ad capacitatem circuli super
          capacitatem trigoni ut gf ad cd. Signatur igitur in fg
          additio semidiametri inscripti tetragono super semidiametrum
          inscripti trigono, et sit fh et trahatur de
          b per h ad cd linea, et contactus sit i. Dico quod di est
          additio semidiametri circuli isoperimetri super semidiametrum
          inscripti trigono. Quae enim est habitudo fg
          ad dc, illa fh ad di. Sed diversitas capacitatis in isopleuris et
          isoperimetris super capacitatem trigoni non evenit nisi ex diversa
          additione semidiametrorum circulorum inscriptorum super
          semidiametrum inscripti trigono. Quae igitur est habitudo
          capacitatum super trigonum, illa est additionum semidiametrorum
          inscriptorum super semidiametrum circuli inscripti trigono. Per hoc
          patet quaesitum.

          [image: ]
Fig. 4

            Eiusdem de sinibus et chordis

            [image: link to parallel text] 9. Ex his nunc circa chordas et arcus scientia
            perfecta elici poterit. Nam si una est habitudo eius, quod addit
            semidiameter inscripti polygoniae isopleurae et isoperimetrae post
            trigonum super semidiametrum inscripti trigono ad id, quod addit
            semidiameter circumscripti trigono super semidiametrum
            circumscripti illi polygoniae, et si illae additiones una cum
            differentia seu sagitta simul iunctae aequivalent sagittae lateris
            trigoni, ut ex praemissis clare constat: tunc scita habitudine
            talium additionum, quae tamen numero non attingitur sicut nec
            medietas duplae, ars est reperta ad omne scibile in chordis et
            arcubus.

            [image: link to parallel text] 10. Quae autem sit habitudo additionum sic in
            propinquis numeris investigatur. Esto quod semidiameter circuli
            trigono circumscripti sit 14. Erit semidiameter inscripti 7, cuius
            quadratum 49, et quadratum semilateris trigoni ter tantum,
            scilicet 147, et quadratum semidiametri circumscripti quater
            tantum, scilicet 196. Erit igitur semilatus tetragoni radix 9/16
            [et] quadrati semilateris trigoni, scilicet radix de 82 cum 11/16,
            et talis erit semidiameter inscripti. Erit autem semidiameter
            circumscripti radix dupli numeri, scilicet 165 cum 6/16. Subtracta
            igitur radice de 49 a radice de 82 et 11/16 differentia est
            additio semidiametri inscripti tetragono super semidiametrum
            inscripti trigono, quae erit aliquid plus quam duo, et subtracta
            radice de 165 cum 6/16 a radice de 196, quae erit parum plus quam
            unum, habes additiones, et earum habitudo est illa, per quam omnia
            investigantur. Nam si has additiones subtraxeris a sagitta lateris
            trigoni, scilicet 7, remanet sagitta tetragoni. Si igitur
            diviseris 7 secundum praefatam additionum habitudinem et maiorem
            addideris super semidiametrum inscripti trigono, habes
            semidiametrum circuli isoperimetri.

            [image: link to parallel text] 11. Poteris etiam ex quadrato lateris trigoni aut
            quadrati scire sic quadratum lateris cuiuslibet polygoniae
            dabilis, et ex eius scientia et habitudine additionum devenitur ad
            sagittam et semidiametrum inscripti, et sic scitur chorda. Et haec
            est perfectio ultima geometricae artis, ad quam hactenus veteres
            non legimus devenisse. Est etiam nunc ars completa geometricarum
            transmutationum, quam ante minus, tamen sufficienter quoad
            quadraturam circuli descripsimus.

            [image: link to parallel text] 12. Et putamus nihil scibilis in geometricis nunc
            volenti diligenter in hoc medio inquirere remanere occultum. Haec
            sic maxime scripserim, ut videatur potentia artis coincidentiarum,
            per quam in omni facultate occulta penetrantur. Ex sola enim
            coincidentia semidiametrorum inscripti et circumscripti circulorum
            in omnibus polygoniis differentium et in circulo tantum
            coincidentium inquisitio nos ad praemissa perduxit.

            Laus Deo.

          
        
  De mathematicis complementis Beatissimo Papae
              Nicolao Quinto. Nicolaus cardinalis Sancti Petri ad
              Vincula

              
          [image: link to parallel text] 

          1. Tanta est potestas summi tui
          pontificatus, Nicolae quinte, pater beatissime, ut per eos, qui vim
          eius attente consideraverunt, assimiletur potentiae quadrandi
          rotundum et quadrum circulandi, quasi maior illi dari non possit.
          Verum, cum in te non tantum primatus sit clavis et potestas
          scientiae supremaeque hierarchiae ecclesiae, sed velut perfectus
          magister omnium scibilium ex tuo felicissimo ingenio incomparabilis
          notitiae esse iudiceris ab omnibus. Id magnificentissime effecisti,
          ut omnium tam Graecorum quam Latinorum scripta, quae reperiri
          queunt, tua mirifica diligentia in omnium nostrum notitiam
          accuratissime pervenerint, ita, ut etiam geometrica non neglexeris,
          quae sane omni honore digna a maioribus nostris habita fuerunt.

          [image: link to parallel text] 2. Tradidisti etenim mihi proximis diebus magni
          Archimedis geometrica Graece tibi praesentata et tuo studio in
          Latinum conversa, quae mihi tam admiranda visa sunt, ut circa ipsa
          non nisi magna cum diligentia versari potuissem. Ex quo id effectum
          est, ut meo studio et labore complementum aliquod illis addiderim,
          quod tuae sanctitati offerre decrevi. Solum enim te dignum scio, ut
          quae a saeculo incognita remanserunt, per te cunctis patescant. Et
          non tantum scibilia, quae semper circa quaesitam circuli quadraturam
          versari consueverunt, sed et quae in omni mathematica perfectione
          praestant complementum, ex his ipsis meo iudicio perfecte consequi
          possint.

          
            [LIBER PRIMUS]

            [image: link to parallel text] 3. Testimonio omnium, qui se ad geometrica
            contulerunt, nemo propinquius Archimede ad circuli pervenit quadraturam. Qui videns illam
            attingi non posse, nisi curva circularis linea in rectam
            resolvatur, nisus est hanc artem mediante helica ostendere. Sed
            quia proportio motus signi a centro per semidiametrum ad motum, in
            quo in eodem tempore aliud signum per circumferentiam movetur,
            sine qua helica describi nequit, se habet ut semidiameter ad
            circumferentiam, quae non est scita, sed quaeritur. Hinc videtur
            ipsum defecisse. Facilius enim erit circulum quadrare quam helicam
            describere et contingentem eidem in fine circulationis applicare.
            Remanet igitur ex his, quae Archimedes reliquit, haec ars adhuc penitus abscondita. Ego autem
            quamvis multos in vanum laborasse in hac legerim indagatione,
            temptare coepi, si forte haec difficultas possit medio
            coincidentiarum finem capere, uti in aliis scientiis vim illam
            maximam esse comperi. Et visum est mihi quod data possibilitate,
            quam passim omnes admittunt, faciliter possit huius scientia
            pariter et praxis modo, quo sequitur, adipisci.

            [image: link to parallel text] 4. Primo advertendum quod in figura multiangula
            seu polygonia, quae habet aequalia latera, punctus unus
            aequedistans a medio et fine laterum centrum dicitur et linea ab
            illo centro ducta ad medium lateris est semidiameter circuli
            inscripti eidem et vocetur prima linea. Et alia linea ducta ab
            eodem centro ad finem lateris seu angulum aliquem est semidiameter
            circuli circumscripti eidem et vocetur secunda linea. Hae duae
            lineae in omni multiangula diversae sunt quantitatis et tanto
            plus, quanto latus eius maius. Nam potentia secundae lineae
            continet potentiam primae et cum hoc potentiam medietatis lateris,
            quia latus trianguli orthogonii, quod opponitur angulo recto, ut
            ostendit Euclides.

            [image: link to parallel text] 5. Et quia prima figurarum rectilinearum est
            triangulus, hinc in eo differunt in quantitate prima et secunda
            lineae maxime. In circulo vero coincidunt, quia ibi centrum
            aequaliter distat a circumferentia; medium enim et finis lateris
            coincidunt et est undique angulus. Est autem prima linea in
            trigono brevissima et secunda longissima. In eiusdem peripheriae
            tetragono prima post primam trigoni brevissima et sic secunda post
            secundam trigoni longissima et ita consequenter. Et quoniam prima
            in tetragono tali longior est prima in trigono, si ducitur prima
            in tetragono in medietatem peripheriae et similiter prima in
            trigono in eandem medietatem, diversas superficies, quae aequantur
            polygoniis, oriri constat (cfr. figura 1).

            [image: ]
Fig. 1
[image: link to parallel text] 6. Unde excessus superficiei illius, quae ex
            prima tetragoni ducta in medietatem peripheriae, super
            superficiem, quae oritur ex ductu primae trigoni in eandem
            medietatem peripheriae, est excessus capacitatis tetragoni super
            capacitatem trigoni, et sic quidem in cunctis polygoniis ex
            excessu primae lineae cuiuslibet super primam trigoni isoperimetri
            deprehenditur excessus capacitatis ipsius polygoniae super
            capacitatem trigoni. Quanto autem differentia primae et secundae
            linearum est minor, tanto excessus primae lineae polygoniae super
            primam trigoni maior. Et quia in circulo coincidunt prima et
            secunda, excessus semidiametri circuli isoperimetri super primam
            trigoni est maximus et hinc circuli capacitas super capacitatem
            trigoni maxima. Unde linea una recta, quae in trigono ad tria
            latera est extensa, ut sit illius superficiei perimeter, in
            tetragono ad quattuor latera extenditur, ut sit tetragoni
            perimeter, et adhuc plus in pentagono. Si autem maxime extenditur,
            ita quod plus extendi non possit, erit perimeter circuli.

            [image: link to parallel text] 7. Ex his patet, quod si trigonus est minimae
            capacitatis, ubi prima et secunda lineae maxime differunt, et
            circulus maximae capacitatis, ubi prima et secunda lineae
            coincidunt, erit sic proportionabiliter in mediis polygoniis.
            Quare, si ponitur excessus capacitatis circuli super trigonum, ut
            est differentia primae et secundae lineae in trigono, erit
            excessus capacitatis circuli super tetragonum ut differentia
            primae et secundae lineae in tetragono et ita consequenter, cum ad
            maiorem excessum primae lineae unius super primam lineam alterius
            sequatur minor differentia primae et secundae in excedente quam
            sit primae et secundae in excessa. Ex quo faciliter dato excessu
            primae in una aliqua super primam trigoni et differentia
            differentiarum primae et secundae illius capacioris et primae et
            secundae trigoni potest haberi semidiameter circuli isoperimetri,
            cuius scilicet circumferentia aequatur tribus lateribus trigoni
            aut quattuor tetragoni.

            [image: link to parallel text] 8. Quo scito patet circuli quadratura. Nam si
            ducitur semidiameter illius circuli isoperimetri in medietatem
            peripheriae, oritur superficies quadrangularis, quae nec maior nec
            minor esse potest superficie circulari, ut Archimedes faciliter ostendit. Haec superficies quadrangularis in
            quadratam ducitur, quoniam costa eius erit medium proportionale
            inter semidiametrum circuli et semiperipheriam eius, quae ex nona
            sexti Euclidis invenitur. Omnia haec quamvis manifesta sint, volo
            tamen illa etiam illis, qui mathematicis operam non impenderunt,
            clarissima facere. Figurae autem multiangulae similium laterum et
            aequalium peripheriarum, de quibus loquar, polygoniae isopleures
            et isoperimetrae ex conformitate Graecae linguae apud aliquos
            reperiuntur nominari.

            [image: link to parallel text] 9. Si ducitur linea recta in lineam rectam,
            oritur figura quattuor rectorum angulorum, et si eadem ducitur in
            duplam, oritur dupla, et ita deinceps. Et si recta ducitur de
            angulo in angulum, diameter est, quia in duo dividit
            (cfr. figura 2).

            Ut si ab linea ducitur in bc, oritur figura quadrangularis abcd habens quattuor angulos rectos. Et si ab ducitur in be, quae
            sit dupla ad bc, oritur quadrangulus abef, qui est duplus ad abcd. Linea vero ac
            diameter est, similiter et ae.

            [image: ]
Fig. 2

          
            Prima propositio

            [image: link to parallel text] 10. Multiplicatio primae lineae in medietatem
            peripheriae aequatur embado polygoniae.

            Sit abcd figura quadrata quattuor
            rectorum angulorum et aequalium laterum. Cui inscribatur circulus
            super e centro, ita quod tangat quattuor
            latera quadrati in medio, et trahatur de e
            ad contactum, ubi circulus tangit ab, linea
            ef, quae est prima, quia semidiameter
            inscripti, et trahatur eb linea et
            similiter de e ad contactum, ubi circulus
            bd latus tangit, et sit eg, et dupletur linea fb, et sit fh, et
            similiter dupletur eg, et sit ei dupla, et claudatur quadrangulus per lineam
            ih, et ducatur eh
            diameter. Manifestum est ex praemissa efb
            et ebh triangulos esse aequales. Primus
            enim est medietas primi quadranguli, quia eb diameter, et efh
            triangulus est medietas secundi quadranguli, qui est duplus ad
            primum, quia eh diameter (cfr. figura 3).

            [image: ]
Fig. 3
[image: link to parallel text] 11. Erit igitur ebh
            triangulus ut efb. Duplicentur lineae fh et ei, et sit fk dupla ad fh et el dupla ad ei, et
            claudatur quadrangulus per lineam lk. Et
            quia efb triangulus est octava pars
            quadrati abcd, aequabitur efkl quadrangulus abcd
            quadrato. Sed fk est medietas peripheriae
            abcd. Aequatur enim duobus lateribus
            quadrati, et ef prima linea ducta est in
            medietatem peripheriae, quare patet propositum. Et sicut in
            quadrato, ita in omnibus polygoniis eodem modo constat, omnes enim
            in duplo plures triangulos orthogonios resolvuntur quam latera
            habeant, et proceditur pari modo, ut praemittitur.

          
          
            Propositio secunda

            [image: link to parallel text] 12. Peripheria polygoniae, quae est circumscripta
            circulo, est maior peripheria circuli et tanto plus, quanto
            habuerit pauciora latera. Contrarium, si circulo fuerit
            inscripta.

            [image: ]
Fig. 4
Circumscribatur circulo abc triangulus
            et hexagonus defhik, et de g centro trahatur ga
            semidiameter circuli, quae erit prima trianguli et hexagoni. Si
            igitur ag ducitur in medietatem peripheriae
            trigoni, oritur quadrangulum aequale trigono. Embadum seu area
            trigoni in se continet aream circuli inscripti (cfr. figura 4).

            [image: link to parallel text] 13. Erit igitur area circuli minor, quare
            peripheria circuli minor peripheria trigoni, et sic peripheria
            hexagoni minor peripheria trigoni et peripheria circuli minor
            peripheria hexagoni, quare patet propositum. In polygoniis
            inscriptis contrarium, nam area circuli maior. Quare quadrangulum
            ei aequale constituitur ex multiplicatione semidiametri in lineam,
            quae erit maior quam medietas peripheriae cuiuscumque polygoniae
            inscriptibilis. Continet igitur area circuli aream hexagoni
            inscripti et illa hexagoni continet aream trigoni. Erit igitur
            peripheria circuli maior, deinde hexagoni post trigoni et sic
            pariformiter in omnibus.

          
          
            Tertia propositio

            [image: link to parallel text] 14. Inter rectas et circulares lineas minor illa,
            quae alteri subtenditur, et inter diversas illa subtensa, quae
            minor, minus exceditur ab illa, cui subtenditur.

            Tertia circumferentiae circuli, quae subtenditur lateri
            trigoni, est minor lateri, et sexta pars eiusdem circumferentiae,
            quae subtenditur lateri hexagoni, similiter est minor. Et quia
            talis peripheria hexagoni minor est illi peripheriae trigoni, hinc
            minus exceditur proportionaliter sexta circumferentiae circuli a
            latere hexagoni quam tertia a latere trigoni. Sic tertia
            circumferentiae circuli proportionaliter plus excedit latus
            trigoni inscripti quam sexta latus hexagoni inscripti.

          
          
            Propositio quarta

            [image: link to parallel text] 15. Circulus aequalis peripheriae polygoniae est
            maior circulo inscripto eidem et minor circumscripto, et quanto
            polygonia fuerit plurium laterum, tanto illis similior.

            Patet. Nam latus polygoniae est minus quam arcus cui
            subtenditur, qui est arcus circuli circumscripti, et maius quam
            arcus ei subtensus, qui est circuli inscripti. Et quia inscriptus
            et circumscriptus sunt similiores, quando polygonia est plurium
            laterum, erunt igitur tunc etiam similiores circulo
            isoperimetro.

          
          
            Quinta propositio

            [image: link to parallel text] 16. Inter quamcumque inscriptam polygoniam et
            circulum possunt cadere polygoniae maiores illi et minores circulo
            infinitae. Sic inter circumscriptam et circulum minores polygoniae
            et maiores circulo.

            Patet ex divisione continui per partes proportionales in
            infinitum. Data enim chorda cuiuscumque arcus erit chorda medii
            arcus minor. Ita in infinitum. Et chordae sunt latera
            polygoniarum. Sic de lateribus polygoniarum circumscriptarum, quia
            si datur latus circumscriptae polygoniae, cui subtenditur arcus,
            dabitur latus minus, cui subtenditur medietas arcus, ita in
            infinitum.

          
          
            Propositio sexta

            [image: link to parallel text] 17. Quadrangulus surgens ex multiplicatione
            semidiametri in semiperipheriam circuli nec maior nec minor est
            area circuli.

            Patet ex praemissis. Nam peripheria polygoniae
            circumscriptibilis est maior peripheria circuli, sicut et area
            eius maior areae circuli. Et peripheria polygoniae inscriptibilis
            est minor peripheria circuli, sicut et area. Igitur multiplicatio
            semidiametri circuli in medietatem peripheriae suae est maior omni
            area polygoniae inscriptibilis et minor omni area polygoniae
            circumscriptibilis. Et cum data area maiori polygoniae inscriptae
            et minori circulo semper dari possit polygonia inscriptibilis
            maior, sic data area maiori circulo semper potest dari
            circumscriptibilis polygonia minor. Igitur patet propositum.

          
          
            Septima propositio

            [image: link to parallel text] 18. Capacitas circuli excedit capacitatem omnium
            polygoniarum isoperimetrarum.

            Patet. Nam prima linea in omnibus polygoniis est minor prima
            linea circuli, et peripheria est una in omnibus. Plus igitur
            resultabit de multiplicatione primae circuli in medietatem
            peripheriae quam in aliqua.

          
          
            Propositio octava

            [image: link to parallel text] 19. Capacitas trigoni isoperimetri est
            minima.

            Patet, quia habet latus maximum. Plus igitur excedit
            peripheriam inscripti quam aliqua polygonia. Quare circulus
            inscriptus ei est minor omnibus inscriptis aliis. Igitur prima
            eius minima, hinc et capacitas minima.

          
          
            Nona propositio

            [image: link to parallel text] 20. Quanto polygonia talis plurium fuerit
            laterum, tanto capacior.

            Patet, quia cum habeat latera breviora, et potentia secundae
            lineae sit potentia primae et medietatis lateris. Igitur tunc
            prima et secunda lineae minus inter se differunt et plus
            assimilantur primae circuli isoperimetri. Latus enim breve minus
            exceditur ab arcu.

          
          
            Propositio decima

            [image: link to parallel text] 21. In capaciori polygonia necesse est primam
            lineam esse longiorem et secundam breviorem.

            Colligitur ex praemissis. Nam cum circulus eidem inscriptus sit
            similior circulo isoperimetro, quia capacior et circulus
            isoperimeter capacissimus, igitur prima linea illius polygoniae
            longior et latus eius minus. Minus enim latus minus exceditur ab
            arcu, quare propinquius accedit ad circulum isoperimetrum. Et quia
            latus est minus, igitur secunda linea minus differt a prima et
            ideo etiam similior primae circuli isoperimetri, erit igitur
            brevior in capaciori. Et haec est principalis propositio ad
            inveniendum id quod inquirimus.

          
          
            Undecima propositio

            [image: link to parallel text] 22. Si ponitur excessus capacitatis circuli super
            capacitatem trigoni ut differentia primae et secundae lineae
            trigoni, erit excessus capacitatis circuli super capacitatem
            polygoniae mediae inter trigonum et circulum ut differentia primae
            et secundae lineae eiusdem, et si ponitur excessus ut medietas aut
            alia pars differentiae primae et secundae in trigono, ita erit in
            mediis.

            Puta ponatur, quod excessus capacitatis circuli super
            capacitatem trigoni sit ut differentia primae et secundae, et sit
            in numeris prima trigoni 7 et secunda 14. Erit differentia 7. Et
            prima circuli isoperimetri erit 14, quia maior prima trigoni per
            differentiam, quae est 7. Dico, quod prima circuli erit maior
            prima cuiuslibet mediae polygoniae per quantitatem differentiae
            primae et secundae eiusdem. Ut in tetragono, ubi differentia sit
            4, excedit prima circuli primam tetragoni in 4. Erit igitur tunc
            prima tetragoni 10. Si dixeris tetragonum capaciorem in habitudine
            ad circulum, erit igitur prima eius longior. Sit igitur ut 11, cui
            adde differentiam, et habebis 15. Et quia 15 excedit 14, erit
            incapacior per praemissam, sic capacior et incapacior. Similiter,
            si dixeris tetragonum minus capacem. Puta ut 9, erit secunda 13,
            sic minor 14, quare capacior per praemissam. Ita capacior et
            incapacior, quod est inconveniens. Et haec ostensio procedit in
            omnibus.

            [image: link to parallel text] 23. Considera igitur, quod quamcumque portionem
            sagittae addit una polygonia, ut oriatur prima circuli, similem
            omnes addunt. Et ut hoc clare videas, sic procede. Patet ex
            praemissis, si prima capacioris polygoniae est maior quam
            incapacioris, quod illa semper erit minor aliqua prima alicuius
            polygoniae, cum inter quamcumque dabilem, quae minor est circulo,
            possint dari maiores in infinitum. Et ita talis semper est minor
            prima circuli. Sic si fuerit minor illa, erit maior secunda linea
            alicuius polygoniae et sic maior prima circuli. Ideo, si posueris
            ex additione alicuius portionis sagittae ad primam polygoniae
            resultare primam circuli isoperimetri, sic necesse erit ex
            portione similis habitudinis ad sagittam additae primae in
            quibuscumque intermediis polygoniis accidere.

            [image: link to parallel text] 24. Puta si duae tertiae sagittae trigoni ad
            primam eius additae efficiunt primam circuli, sic erit in
            pentagono, hexagono et omnibus. Nam si dixeris in aliqua resultans
            plus aut minus esse, hoc erit necessario propter maiorem
            capacitatem. Si igitur dixeris eam maiorem, hoc non est possibile;
            nam oporteret eam esse minorem prima circuli, et quia prima
            circuli est idem cum prima trigoni addita portione dicta sagittae,
            ita foret maior et minor. Similiter, si dixeris propter
            capacitatem minorem, oporteret simul dicere eandem et maiorem.

            [image: link to parallel text] 25. Palam ex hoc etiam, quod si duae polygoniae
            sic se habuerint, quod similis portio sagittae addita ad primas
            efficit hinc inde aequale, ita erit necessario in omnibus. Nam aut
            illae duae polygoniae habent alias in medio inter eas, ut trigonus
            et pentagonus habent tetragonum. Tunc necesse est sic esse in
            tetragono sicut in trigono et pentagono. Nam si dixeris lineam
            resultantem maiorem ob maiorem capacitatem tetragoni quam trigoni,
            ita erit etiam minor, quia minor capacitas tetragoni quam
            pentagoni. Ita si dixeris ob capacitatem lineam resultantem
            minorem, quia etiam erit simul et maior, quod est impossibile. Sic
            si dixeris duas illas sine medio sequi, ut trigonus et tetragonus,
            et negaveris idem in pentagono. Tunc, quia aut dixeris maiorem ob
            maiorem capacitatem pentagoni et hoc non potest dici, nam
            tetragonus est capacior, ubi non est maior: a fortiori non erit
            maior in pentagono, sed potius minor. Sic si dixeris minorem, non
            valet, quando in tetragono non est minor. Sic patet sequi
            inconveniens, si in aliis non eveniret idem.

            [image: link to parallel text] 26. Ad hoc sequitur, quod si ex simili portione
            in duabus polygoniis modo dicto eadem linea exoritur, quod illa
            erit semidiameter circuli isoperimetri. Nam cum in circulo
            isoperimetro prima et secunda linea sint una, hinc, si additur ad
            primas polygoniarum quaecumque portio sagittarum, sive lineae
            ascendant sive descendant sive maneant eaedem, semper ultima erit
            prima circuli isoperimetri. Puta si addo ad primas unam quartam
            sagittae, tunc erunt continue maiores, et maxima erit ultima et
            prima circuli. Et si addo tres quartas, erunt continue minores, et
            ultima erit minima et prima circuli. Et si addo talem portionem,
            quod in duabus resultat eadem linea, tunc sic erit in omnibus.
            Unde cum ultima tunc sit ut prima, erit quaelibet prima circuli.
            Ex quo etiam manifestum est capacitatem circuli excedere
            capacitatem cuiuslibet polygoniae secundum lineam eandem in
            qualibet habitudinem tenentem ad sagittam suam. Et ita etiam
            quaelibet capacior polygonia omnes minus capaces exsuperat
            secundum lineam eandem in qualibet habitudinem ad suam sagittam
            retinentem.

            [image: link to parallel text] 27. Poterit et hoc aliter ostendi
            (cfr. figura 5). Et sit ab linea secunda
            trigoni, quam dividat c, trahas
            orthogonales de a b c aequales bc et claude figuram per lineam def. Et quia prima linea trigoni est ac, erit prima circuli isoperimetri plus quam
            fe: sit igitur ut fh, et sit eh duae
            tertiae ed. De h
            trahe aequedistantem ad bd et sit hi, trahe similiter lineam ch. Manifestum est quod, si fh est prima circuli isoperimetri, quod tunc
            primae lineae polygoniarum mediarum erunt maiores ac et minores fh et quae
            capacior huius prima similior fh. Est etiam
            manifestum, quod sicut ai et ih simul sunt prima trigoni et differentia
            primae et secundae eiusdem, quae est sagitta lateris eius, et cum
            hoc duae tertiae sagittae, quod sic in polygoniis mediis lineae
            trahi possunt aequedistantes ad ai, quae
            terminantur in ih et af. Quae iunctae residuae lineae ih aequantur primae lineae polygoniae mediae,
            sagittae et duabus tertiis sagittae eiusdem, ut in trigono dictum
            est. Et notum est, quod quanto polygonia illa fuerit incapacior,
            tanto hae duae lineae simul erunt longiores, quia incapacior habet
            maius latus et hinc maiorem sagittam. Sic erunt illae duae lineae
            longissimae in trigono, in circulo isoperimetro brevissimae, quia
            circulus caret latere et per consequens sagitta, et duae lineae in
            polygoniis erunt una in circulo.

            [image: ]
Fig. 5
[image: link to parallel text] 28. Dico igitur quod, si de h versus i signaveris
            sagittam alicuius polygoniae mediae et lineam de termino sagittae
            aequedistantem ad ai traxeris, tunc ch linea secabit illam in duas lineas, quarum
            minor erit pars sagittae et maior prima polygoniae illius. Puta
            sit hk sagitta tetragoni et trahatur de k aequedistans ad hf,
            quae sit kl, et ubi illam secat ch, pone m. Dico km fore duas tertias hk,
            quod de se notum est. Habet enim se mk ad
            kh sicut ci ad ih. Et dico ml fore
            primam lineam tetragoni. Si negaveris aut igitur dixeris
            tetragonum capaciorem aut incapaciorem: si capaciorem, tunc prima
            eius debet esse maior lm et tunc lk et kh simul sunt
            minores prima linea tetragoni, eius sagitta et duabus tertiis
            sagittae, quod implicat contradictionem. Nam si debet tetragonus
            esse capacior, ut dicis, oportet quod lk et
            kh excedant primam tetragoni, sagittam et
            eius duas tertias. Eodem modo implicat contradictionem, si dixeris
            tetragonum incapaciorem. Nam tunc oportebit lm esse minorem et lk et
            kh simul esse maiores prima linea
            tetragoni, sagitta et duabus tertiis eiusdem. Ita de aliis
            polygoniis. Quare patet, si prima circuli isoperimetri excedit
            primam trigoni per partem aliquotam sagittae trigoni, etiam
            excedit primam lineam cuiuslibet polygoniae mediae per similem
            partem aliquotam sagittae polygoniae illius, et dicere aliud
            implicat contradictionem.

          
          
            Propositio duodecima

            [image: link to parallel text] 29. Habitudo excessus capacitatis circuli super
            capacitatem trigoni isoperimetri ad excessum capacitatis
            polygoniae mediae super capacitatem eiusdem trigoni est sicut
            sagitta trigoni ad lineam, quantum est sagitta polygoniae mediae
            eidem minorem.

            Ut si ponitur excessum capacitatis circuli super capacitatem
            trigoni esse ut 7, erit capacitas tetragoni super trigoni secundum
            lineam, a qua sagitta tetragoni est subtracta. Puta si sagitta
            fuerit 4, erit capacitas tetragoni ut tria. Hoc corollarium patet
            ex praemissis.

          
          
            Tredecima propositio

            [image: link to parallel text] 30. Per scientiam excessus capacitatis alicuius
            polygoniae mediae super capacitatem trigoni isoperimetri scitur
            capacitas circuli isoperimetri.

            Manifestum est, cum habitudo sit nota, quod tunc uno excessu
            noto notus erit et alius. Sed quia excessus in tetragono,
            pentagono, hexagono vel alia media polygonia sciri potest per
            scientiam primae lineae trigoni et polygoniae mediae, tunc et
            circuli isoperimetri.

            [image: link to parallel text] 31. Datae rectae curvam circularem aequalem
            assignare (cfr. figura 6).

            [image: ]
Fig. 6
Sit recta ab et factis ex ea trigono et
            tetragono ut praemittitur, sit ef linea
            secunda trigoni, quam quadra, et sit efgh.
            Divide per medium per lineam ik, trahe
            lineam ig, quaere, ubi ig et fg distant per
            differentiam primae et secundae tetragoni, et trahe lineam
            aequedistantem ef et sit ln et differentia lm.
            Signa in nl primam tetragoni, quae sit no, trahe de i per o lineam ad gh, et ubi
            eam scindit, pone p. Manifestum est ex
            praemissis hp semidiametrum circuli, cuius
            peripheria aequatur peripheriis trigoni et tetragoni seu lineae
            rectae ab, quod est intentum.

            [image: link to parallel text] 32. Datae curvae circulari aequalem rectam
            assignare (cfr. figura 7).

            Istud si breviter facere volueris, facito angulum, per quem
            reperias hoc modo: Ad hp semidiametrum
            circuli praemissi iunge in centro lineam ab
            orthogonaliter et ad eius medietatem, quae sit q, trahe pq, et habes
            angulum hpq. Quem facito in aere aut ligno,
            et quando circularem lineam in rectam resolvere cupis, facito
            lineam indefinitae quantitatis, quae ad angulum rectum concurrat
            cum semidiametro in centro, et pone angulum in contactu
            semidiametri et circumferentiae minus latus super semidiametrum.
            Et maius latus anguli abscindet in linea indefinitae quantitatis
            portionem aequalem semiperipheriae.

            [image: ]
Fig. 7
[image: link to parallel text] 33. Dato circulo quadratum aequale assignare
            (cfr. figura 8).

            Hoc sic facito: Inter hp et medietatem
            ab recipias medium proportionale per nonam
            sexti Euclidis, quoniam est costa quadrati aequalis, et medietatem
            huius costae signa in linea, quae ad angulum rectum coniungitur
            hp in centro, et sit hr: trahendo pr et habes
            angulum hpr. Quem facito ex aere vel ligno,
            et modo, quo supra, cum illo omnes circulos quantocius quadrare
            poteris.

            [image: ]
Fig. 8
[image: link to parallel text] 34. Dato quadrato circulum ei aequalem
            assignare.

            Erige de medietate lateris rectam orthogonaliter et pone super
            illam angulum statim praemissum elevando, quousque longius latus
            anguli cadat super finem lateris quadrati, et linea erecta usque
            ad punctum anguli erit semidiameter circuli aequalis quadrato.
            Omnia ista patent de se propter identitatem proportionis
            semidiametrorum ad circumferentiam et costas quadratorum in
            omnibus circulis.

            [image: link to parallel text] 35. Sine istis duobus angulis facere poteris ex
            praemissis per identitatem proportionis eius, quod addit
            semidiameter circuli super semidiametrum trigoni (cfr. figura 9). Puta si vis dati
            circuli circumferentiam, quae sit s,
            transferre in rectam, sume qualemcumque lineam, ut ab, et reperias circumferentiam sibi aequalem
            per praemissa. Deinde erige lineam unam, quae sit hp, orthogonaliter super aliam, quae sit tv, et sit hp
            semidiameter circuli, et signa in illa hk
            semidiametrum trigoni isoperimetri circulo trahendo de t per h k lineas. Deinde
            semidiametrum dati circuli s aequedistanter
            trahe ad hp inter lineam tv et eam, quae de t
            transit per p, et sit xy, et ubi xy scinditur
            per lineam de t per k, signa z. Clarum est
            yz esse semidiametrum circuli inscripti
            trigono isoperimetro circulo s. Ita
            reperies rectam quaesitam.

            [image: ]
Fig. 9
[image: link to parallel text] 36. Ex antehabitis quicquid hactenus in
            geometricis ignotum fuit, inquiri poterit. Fuit autem incognita
            perfectio artis de sinibus et chordis. Nemo umquam scire potuit
            chordam arcus gradus unius et duorum et quattuor et ita
            consequenter, quae nunc sic habetur. Manifestum est omnem
            multiangulam similium laterum ex differentia primae et secundae
            linearum ad habendum semidiametrum circuli isoperimetri aequalis
            proportionis partem addere super primam, et similiter omnem
            excessum, quo prima linea cuiuscumque primam trigoni excedit, et
            excessum, quo secunda trigoni secundam alterius excedit, eandem
            semper in omnibus tenere proportionem. Ex quibus ars generalis de
            sinibus et chordis elicitur, sine qua geometria hactenus mansit
            incompleta. Quomodo autem ad praxim huius accedere queas in
            propinquis numeris, sic investigabis. In veris enim est
            impossibile, quia medietas duplae est innumerabilis, cum nec par
            nec impar, quae cadet in hac ratione.

            [image: link to parallel text] 37. Esto igitur quod semidiameter circuli trigono
            circumscripti sit 14. Erit semidiameter inscripti 7, cuius
            quadratum 49, et quadratum semilateris trigoni ter tantum,
            scilicet 147, et quadratum semidiametri circumscripti quater
            tantum, scilicet 196. Erit igitur semilatus tetragoni radix 9/16,
            id est novem sextae decimae, quadrati semilateris trigoni,
            scilicet radix 82 cum 11/16, et talis erit semidiameter inscripti.
            Erit autem semidiameter circumscripti radix dupli numeri, scilicet
            165 cum 6/16. Subtracta igitur radice de 49 a ra- dice de 82 cum
            11/16 differentia est additio semidiametri inscripti tetragono
            super semidiametrum inscripti trigono, quae erit aliquid plus quam
            duo. Et subtracta radice de 165 cum 6/16 a radice de 196, quae
            erit parum plus quam unum, habes additiones, et earum habitudo est
            illa, per quam omnia investigantur. Nam si has additiones
            subtraxeris a sagitta lateris trigoni, scilicet 7, remanet sagitta
            tetragoni. Si igitur diviseris 7 secundum praefatam habitudinem
            additionum et maiorem addideris super semidiametrum inscripti
            trigono, habes semidiametrum circuli isoperimetri.

            [image: link to parallel text] 38. Poteris etiam ex quadrato lateris trigoni aut
            quadrati scire sic quadratum lateris cuiuslibet polygoniae
            dabilis, et ex eius scientia et habitudine additionum devenitur ad
            sagittam et semidiametrum inscripti, et sic scitur arcus chordae.
            Et haec est perfectio ultima geometricae artis, ad quam hactenus
            veteres non legi pervenisse. Est etiam nunc ars completa
            geometricarum transmutationum, quam ante minus, tamen sufficienter
            quoad quadraturam circuli descripsi.

            [image: ]
Fig. 10
[image: link to parallel text] 39. Adhuc ut latus cuiuscumque multiangulae
            quantocius vertas in curvam, facere poteris instrumentum duplicis
            anguli. Ut si latus sit ab trigoni, cuius
            sagitta seu primae et secundae linearum differentia, quod idem
            est, sit cd, et additio semidiametri
            circuli super primam trigoni sit ce. Tunc
            si de a per e lineam
            traxeris et similiter de a per d aliam, duo anguli circa a constituentur. Redige igitur bae et bad in unum
            aereum instrumentum, quod applica in omnibus ita, ut iam in
            trigono, sic quod latus ab eiusdem iaceat
            super latus multiangulae et latus ad
            contingat finem sagittae. Tunc latus ae
            ostendit additionem super primam illius multiangulae, ut sit
            semidiameter circuli isoperimetri. Descripto igitur arcu secundum
            hoc et tractis sectoribus de centro ad fines lateris arcus, qui
            cadet inter sectores, aequabitur lateri dato. Procedit veritas
            huius ex aequali habitudine portionis addendae super primam
            multiangulae, ut fiat semidiameter circuli isoperimetri, ad totam
            differentiae primae et secundae linearum multiangulae, quae
            differentia sagitta nominatur (cfr. figura 10).

            [image: link to parallel text] 40. Adhuc ex praemissis constat, quod sicut
            quaecumque recta potest esse latus trigoni, tetragoni, pentagoni
            et ita consequenter, sic data recta dari poterunt innumerae curvae
            ei aequales, et quod propterea poterunt reperiri anguli, qui se
            habent ut datae lineae, scilicet ut costa et diameter quadrati vel
            diameter circuli et circumferentia eius et ita de omnibus, et
            superficies, quae se habeant ut lineae datae. Ex quo illa, quae
            non solum in geometricis fuerunt hucusque occulta, sed et in
            musicis et in musicalibus instrumentis ignorata, venari poterunt,
            ita quod si quod scibile umquam fuit in geometricis et non scitum,
            amplius volenti ingenium applicare clare patefiat. Et ob hoc haec
            adinventio merito nomine complementi sortitur et digna est, ut per
            admirandam potentiam tuam, beatissime pater, quam omnes catholici
            adeo stupent, ut te ab admiranti dictione papae papam appellent,
            in omnium notitiam deducatur.

          
          
          
            [LIBER SECUNDUS]

            [image: link to parallel text] 42. Adicio nunc alias quasdam meas adinventiones
            circa superficierum ad invicem transmutationes, quas ut priores
            sanctitati tuae dedico, qui in omnibus principatum tenes et solus
            dignus es, ut cuncta tibi patescant.

            [image: ]
Fig. 11
[image: link to parallel text] 43. Lineam figuram motus puncti concipio. Quae si
            recta fuerit, tunc si uno eius termino fixo manente movetur, hic
            motus recte per triangulum orthogonium figuratur (cfr. figura 11). Ut si ab linea movetur a
            stante, motus figuratur per triangulum abc.
            Si enim motus b est ut latus bc, tunc sic proportionabiliter omnia puncta
            dabilia. Puta si d est punctus medius, tunc
            de est ut motus d,
            et de latus est medium ad bc (cfr. figura 12). Si vero ab recta movetur aequaliter in a sicut in b, motus
            configuratur per duplicem orthogonium sive quadrangulum abcd; omnia enim puncta dabilia aequaliter
            moventur. Si vero a movetur similiter et
            b, sed inaequaliter, hoc fieri potest
            infinitis modis et unica figura non poterit configurari.

            [image: ]
Fig. 12
[image: link to parallel text] 44. Ex prima configuratione motus lineae rectae,
            cuius unus terminus manet fixus, sequuntur ista: Scilicet quod
            superficies, quae est mensura motus lineae, quae ex revolutione
            lineae exoritur, habet lineam curvam peripherialem, quae ex puncto
            b exoritur, et superficiem circularem, quae
            ex linea ab provenit. Quod si in ab aliqualem punctum signaveris, puta in medio,
            qui sit d, peripheria ex d erit se habens ad peripheriam ex b sicut in configuratione de latus ad bc latus;
            sunt enim peripheriae mensurae motus punctorum. Unde necesse erit
            omnem semidiametrum ad circumferentiam eandem tenere mensuram
            (cfr. figura 13).

            [image: ]
Fig. 13
[image: link to parallel text] 45. Deinde quia superficies ex motu semidiametri
            super peripheriam constituitur et una est omnium semidiametrorum
            ad peripherias habitudo, illa erit habitudo superficierum quae
            potentiarum semidiametrorum. Quare superficies circuli habens
            semidiametrum ut quattuor ad superficiem illius, quae habet
            semidiametrum ut duo, quadrupla est. Quae conicarum superficierum
            ad invicem et ad suas bases habitudo ex hoc habetur. Nam cum
            semidiameter basis et latus trianguli, quod conicam describit,
            moveantur uno terminali earum puncto fixo et super eadem basis
            circumferentia, illa erit superficierum habitudo, quae linearum,
            ex quarum motu ipsae superficies constituuntur. Uti est
            semidiameter basis et latus illud trianguli, ex quo conica, ut ab et bc
            (cfr. figura 14).

            [image: ]
Fig. 14
[image: link to parallel text] 46. Ex secunda configuratione motus lineae
            aequaliter in omnibus punctis motae sequitur quod superficies,
            quae ex tali motu constituitur, dupla est ad illam, quae ex primo
            motu. Quare si semidiameter movetur secundo motu super eadem
            peripheria, super qua primo motu mota est, oritur superficies
            dupla ad primam. Unde necesse erit quod multiplicatio semidiametri
            in semiperipheriam aequetur superficiei circulari. Dico autem,
            quando ambo terminalia puncta aequaliter moventur
            (cfr. figura 15).

            [image: ]
Fig. 15
Nam si unus moveretur super concavitate alicuius arcus et alius
            super convexitate eiusdem, superficies non foret dupla ad illam,
            quae fuit exorta ex motu eiusdem lineae uno termino eius fixo
            stante et alio in concavitate arcus moto, licet arcus sint
            aequales. Ut si arcus bd est ut arcus ce, si bc linea movetur
            superficiem describendo, quae clauditur inter rectas bc et de et curvas bd et ce, licet super
            aequalibus arcubus moveatur, non tamen describit duplam
            superficiem ad motum ab aequalis bc fixo a stante et b moto usque in d per
            aequalem arcum, quia b movetur in
            concavitate bd arcus, sed c de linea bc in
            convexitate. Minuit autem convexitas, quantum sunt illae portiones
            fgch et fiek.

            [image: link to parallel text] 47. Ex hoc quae circa habitudines cylindrorum seu
            rotundarum columnalium superficierum et suarum basium et
            cylindralium, conicarum curvarum atque planarum circularium omnis
            scientia elicitur. Nam constat columnam rotundam, cuius altitudo
            est ut semidiameter basis, habere duplam superficiem basis. Nam
            linea, quae basim efficit, movetur uno puncto eius terminali
            stante, alio circumferentiam describente et illamet columnarem
            superficiem constituit per motum aequalem utriusque terminalis
            puncti super eadem circumferentia basis, ut ex abc angulo recto super a
            circumvoluto describitur basis per ab et
            per bc duplex superficies cylindrica, quia
            bc aequalis ab
            aequaliter in b et c
            punctis terminalibus movetur (cfr. figura 16).

            [image: ]
Fig. 16
[image: link to parallel text] 48. Sic pariformiter in conicis. Si abc triangulus, cuius angulus bac rectus super ac
            revolvitur, et bc latus fuerit duplum ad
            ab, aequabitur illa conica superficies
            priori columnari, et si feceris circulum, cuius semidiameter dupla
            foret ad ab, eius superficies plana
            aequabitur ambabus, columnari et conicae simul (cfr. figura 17).

            [image: ]
Fig. 17
[image: link to parallel text] 49. Palam ex his, si circumferentialis linea
            circuli in rectam redigeretur et duceretur in ipsam semidiameter,
            superficies quadrangula, quae surgeret, dupla foret ad circularem,
            cuius erat circumferentia. Nam haec ductio motus esset, ubi ambo
            terminales puncti aequaliter moverentur, sed constitutio circuli
            ex motu eiusdem lineae altero puncto stante oritur. Recte igitur
            dictum est a multis, quod ductio seu multiplicatio semidiametri in
            semicircumferentialem lineam efficit superficiem aequalem
            circulo.

            [image: link to parallel text] 50. Adhuc est alius motus compositus, scilicet
            progressionis et descensionis, ut in figura. Nam, ut concipis, ab movetur duplici motu, super ac scilicet continue progrediendo et simul
            descendendo aequaliter (cfr. figura 18). Erit mensura
            progressionis ac, descensionis ab et descensionis et progressionis simul bc. In quanto enim tempore progreditur de a in c, in tanto
            descendit b per bc,
            ut veniat in c, et exoritur figura abcd. bc in se complicat duplicem motum
            descensionis ab et progressionis ac, quare potentia bc
            est ut ab et ac. Ex
            hoc nota, quomodo ex motu lineae simul oriuntur duo trianguli et
            quadrangulus.

            [image: ]
Fig. 18
[image: link to parallel text] 51. Si autem ab movetur
            progrediendo in ac et descendendo
            inaequaliter, ita tamen, quod illa inaequalitas est aequalis
            arcui, tunc oritur figura abcd, et quoniam
            bc arcus in se complicat motum
            progressionis et descensionis inaequalis, igitur cb arcus est maior linea cb (cfr. figura 19). Et dico motum
            descensionis inaequalem, quia postquam b
            pervenit ad medium arcus, non descendit per medium sui infra ca, sicut quando descendit per medium lineae
            bc. Et considera quomodo a describit arcum ad.
            Movetur igitur a in convexitate et b in concavitate, et quantum addit concavitas
            super lineam cb, tantum convexitas minuit.
            Quare curva superficies inter arcum bc
            concavum et arcum aequalem ad convexum
            aequatur quadrangulo rectilineo abcd, et
            ita habes quomodo eadem quantitas inter maiores curvas cadit et
            minores rectas. Possunt ex his varii alii compositi motus concipi
            modi, quos nunc transeo, quia quisquam per se illos concipere
            poterit.

            [image: ]
Fig. 19
[image: link to parallel text] 52. Si ad tertium motum, quando ambo termini
            lineae moventur, sed inaequali motu, advertis, clare comperies
            secundum proportionem motuum superficies attingi (cfr. figura 20). Et ut facilius
            inducaris, concipito ab lineam duplicem et
            divisibilem usque ad b punctum, qui
            indivisibilis utriusque divisae terminus maneat. Esto igitur quod
            a stante b moveatur.
            Si tunc a divisum elevaveris, ut circa b fiat angulus, tunc secundum circumferentiam,
            quam a mobile describit, ad
            circumferentiam, quam b describit, scire
            poteris proportionem superficierum. Puta esto quod a mobile elevetur, ut constituat talem angulum,
            quod linea, quae de a cadit usque ad
            punctum, qui ita distet ab horizonte, sicut a fixum, et sic ad sit
            medietas ab, tunc ba
            mobile describet superficiem conicam, quae erit maior plana
            circulari, quam ab describit, pro
            medietate, et ita proportionaliter in omnibus. Quare patet, quod
            quando a mobile elevatur, ut eius motus sit
            duplex ad motum ab, scilicet quando erit ex
            ipsis linea una, tunc ba mobile describet
            superficiem triplam et planam ad superficiem, quam ab describit. Et illa est ultima et maxima;
            quae in medio cadunt, proportionabiliter apprehendes. Ex quo
            habes, quomodo portiones conicas, quae habeant proportionem quam
            volueris ad basim, constituere poteris, et similiter, quomodo
            superficies rhombicas, quae ex duabus conicis unam basem
            habentibus reducere poteris in alias. Et quaeque circa hoc scire
            optas, ex hoc faciliter elicies.

            [image: ]
Fig. 20
[image: link to parallel text] 53. Est autem advertendum ex praemissis, quomodo
            in conicis possis procedere. Ut si abc
            triangulus sit et ab latus describens
            conicam et cb semidiameter basis, trahe
            lineam ac in continuum et de b duc lineam, ut facias aequalem triangu lum,
            qui sit bdc (cfr. figura 21). Manifestum est,
            si ad fixa manente circumvolvitur
            triangulus abd, rhombum oriri ex duobus
            aequalibus conis. Trahe igitur ab in
            continuum, et sit be ut ab. Clarum est, si circumvolvitur ut prius,
            lineam be efficere superficiem triplam ad
            superficiem ab et conicam superficiem ae quadruplam ad eam, quae ex ab. Unde si bd
            elevaveris in medium inter bd et be, efficiet superficiem duplam sicut bd aequalem et bc
            triplam, et semper pervenietur ad medium, quando faciet angulum
            rectum cum semidiametro basis, et si minus vel plus elevatur,
            minus et plus efficiet, ut haec ex praemissis nota sunt. Habes
            igitur, quod quando conus et columna rotunda habent eandem basem
            et latus coni est ut altitudo columnae, superficies columnae
            semper est dupla ad superficiem coni, et si plus, plus, si minus,
            minus proportionabiliter.

            [image: ]
Fig. 21
[image: link to parallel text] 54. Si feceris latus coni chordam arcus
            describendo arcum super ipsum, ut super ab
            latus afb arcum et super be eundem arcum, erit superficies ex curva afb tertia superficiei, quae ex curva be. Et ita, si volueris duplam, facito, ut in
            conicis dictum est. Unde si afb est
            quadrans, palam ex circumvolutione semisphaericam oriri
            superficiem et ex bg curva duplam eius,
            scilicet superficiem curvam aequalem superficiei ‹sphaerae›, cuius
            cb maioris circuli semidiameter, et ex bc curva triplam (cfr. figura 22).

            Ex quo elicias, quomodo in talibus curvis superficiebus poteris
            qualem volueris multiplicationem efficere.

            [image: ]
Fig. 22
[image: link to parallel text] 55. Si feceris arcum lineam curvam curvitate
            alicuius sectionis parabolae aut transversae cylindri, quae
            sectiones non sunt circulares, sed alia curvitate curvae, eodem
            modo procedendo aequalis erit proportio superficierum.

            [image: link to parallel text] 56. Si ab stante a circumducto circularem planam superficiem
            descripseris et quadrantem descripti circuli uno eius terminali
            puncto ad b iuncto, alio, qui sit c, ut a fixo stante
            super ac circumduxeris, superficies ex
            quadrante dupla erit ei, qui ex linea ab
            exoritur (cfr. figura 23). Patet, nam ex bc oritur
            superficies semisphaerica et ab circulus
            maximus, cuius quattuor superficies aequantur superficiei
            sphaerae, ut probat Archimedes.

            [image: ]
Fig. 23
[image: link to parallel text] 57. Si volueris cylindricam, sphaericam ac
            conicam superficies et infinitas portiones conicas describere
            eiusdem superficiei, sic facito (cfr. figura 24):

            [image: ]
Fig. 24
Sit ab semidiameter alicuius circuli,
            cui iunge ad angulum rectum bc aequalem ab, trahe de a
            aequedistantem ad bc in infinitum et sit
            ad, trahe de b ad
            ad lineam duplam ad ab, et sit bd dupla ad
            ab. Deinde trahe lineam de d ad c. Dico quod omnes
            lineae, quae duci possunt de b ad cd in circumvolutione describunt portiones
            conicas aequales vel pyramidali bc vel
            conicae bd, quod ex bc et ex bd oriantur
            aequales, quae sunt duplae ad planam circuli, cuius ab semidiameter. Superius est manifestatum,
            quod vero mediae sic se habeant, puta bi et
            bg et quaeque tales. Patet, nam non possunt
            superficies esse maiores illi, quae ex bc,
            nec minores illi, quae ex bd. Quae cum sint
            aequales, erunt et similiter omnes mediae aequales. Describe
            quadrantem circuli, cuius ab semidiameter,
            et sit be. Manifestum ex praemissis
            superficiem, quae ex curva be oritur, illis
            aequalem.

            [image: link to parallel text] 58. Curvas lineas, non tamen circulares, ex
            inaequali motu lineae in ambobus suis terminalibus punctis
            causatas concipito, ac si ab recta
            moveretur et b plus quam a (cfr. figura 25).

            [image: ]
Fig. 25
Puta a movetur per lineam ac et b per curvam bd et si regulariter, tunc quando a pervenit ad medium ac,
            etiam b pervenit ad medium bd. Potest etiam unus punctus moveri
            regulariter continuo aequali motu et alius inaequali motu. Puta in
            principio velociori et continue tardiori successive et regulariter
            per aequalem scilicet inaequalitatem. Ex his diversitatibus varias
            contingit oriri curvitates; aliquae erunt ut sectiones conicae,
            aliae ut transversales cylindricae aut obliquae sphaericae
            sectiones.

            [image: link to parallel text] 59. Ex quo curvae superficies sectionum, quae
            parabolae dicuntur, et transversalium cylindrorum non causantur
            directe ex motu lineae. Si volueris inquirere portionum illarum
            habitudines, ita facito: Considerabis excessum chordae super
            sagittam, et ille excessus erit ut motus lineae aequalis sagittae
            in uno eius puncto, alius motus alterius puncti erit ut curva.
            Unde superficies erit medium eius, quod fit ex ductu sagittae in
            curvam ac si non foret linea mota in uno eius termino, et erit
            ultra medium secundum habitudinem potentiae excessus arcus super
            sagittam ad potentiam curvae.

            [image: link to parallel text] 60. Puta esto quod abscisio sit in circulo et
            quod per semichordam et sagittam sextae circumferentiae, quae
            signetur per abc, et sit ab semichorda duplicis arcus et ac sagitta et centrum circuli d (cfr. figura 26). Trahe db et dc et lineam bc. Manifestum est ac et
            ad aequari et triangulos dba et bac. Portio
            igitur super lineam bc, in qua excedit
            abscisio triangulum, venit ex motu ac
            sagittae in ambobus terminis. Et si ambo termini fuissent
            aequaliter moti, portio super lineam bc
            esset aequalis toti abscisioni bac, sed
            quia inaequaliter moti sunt termini, ideo est minor. Et ut videas,
            quomodo inaequaliter moti, signa de b
            versus a aequalem ac, et sit be ut ac. Moveatur igitur b
            super arcu bc, et dum sic b movetur super bc arcu,
            necesse erit e moveri versus a. Movetur igitur in eodem tempore, quo b per arcum, e per
            lineam ea. Quae igitur est habitudo
            potentiae ea lineae ad potentiam rectae,
            quae aequatur bc curvae, tanto excedit
            superficies abscisionis medietatem portionis circuli dbc. Deberet enim esse medietas ductio ac in arcum bc illius,
            quod fit ex ductu db in eundem arcum, cum
            ac sit medietas db.
            Sed quia movetur terminus in ac, qui manet
            fixus in db, ideo excedit medietatem. Esto
            igitur quod bc curva sit tripla ad ea. Tunc excedit medietatem in una nona
            medietatis, et erit portio super lineam bc
            duae nonae medietatis. Ita in sectionibus curvis operare.

            [image: ]
Fig. 26
[image: link to parallel text] 61. Propono nunc modum tradere, quomodo curva
            linea in rectam vertitur, non ut in primo libello per medium
            versionis rectae in curvam, sed immediate et hoc per subtilem
            coincidentiam, cuius haec est propositio.

            [image: link to parallel text] 62. Descripta quarta circuli et linea prima a
            centro ad principium arcus tracta, et secunda linea de contactu
            primae cum arcu orthogonaliter eiusdem quantitatis cum prima, et
            tertia a centro per finem, quae sit ut latus trigoni inscripti
            circulo, et quarta de fine secundae ad finem tertiae. Si tunc de
            principio quadrantis lineam quintam duxeris ad quartam taliter,
            quod chorda, quae a contactu illius quintae, ubi curvam secaverit,
            ad finem totius quadrantis ducta, quae sit sexta linea, quintae
            fuerit aequalis, erit quinta minor quadrante quanta est medietas
            portionis eius cadentis inter curvam et quartam (cfr. figura 27). Sit super a centro quadrans be
            descriptus et linea prima ab, et secunda
            bc angulum rectum cum ab faciens aequalis eidem, et tertia linea aed ut latus trianguli inscripti, et quarta
            linea cd. Trahe deinde de b lineam ad cd, quae sit
            bg, et ubi secaverit quadrantem be, pone f, et sit
            quinta linea. De f trahe sextam, quae sit
            chorda fe. Dico si fe est ut bg, tunc bg est minor quadrante be medietate fg. Adde
            igitur medietatem fg super bg, et sit gh medietas
            fg. Dico bh aequari
            curvae be.

            [image: ]
Fig. 27
[image: link to parallel text] 63. Ostensio. Praesuppono primo quod quinta et
            sexta cum portione, quae cadit inter curvam et quartam, quam
            semper portionem voco, non differant nisi ut pars quintae, quae
            est chorda, et sexta, quae est chorda residui arcus quadrantis,
            differunt; et quod illa differentia, qua quinta minor quadrante et
            sexta cum portione maior differunt, est duplex quantitas, scilicet
            quantum quinta est minor curva, quae est quadrans, et sexta cum
            portione maior quadrante; et quod ideo quanto plus differunt,
            tanto linea maior, quae mediat inter quintam et sextam cum
            portione, quam lineam voco medium, et quanto minus differunt,
            tanto medium minus. Secundo praesuppono quod sexta cum portione
            potest excedere quadrantem in medietate portionis. Nam in minore
            parte et in maiori potest excedere; ideo etiam in nec minori nec
            maiori quam medietate.

            [image: link to parallel text] 64. Ex his infero talem sextam cum portione ita
            excedere quadrantem, sicut quadrans quintam, et quod portio est ut
            differentia chordarum, et sexta est ut quinta. Illa enim se habent
            consequenter. Si negas, quia dicis differentiam chordarum minorem
            portione, tunc medium etiam minus, et quia minus subtrahitur a
            sexta cum portione quam prius, cum portio per se sit maior et
            medietas portionis maior medietate differentiae chordarum, hinc
            hoc est impossibile, scilicet quod linea fiat minor, si ab ea
            minus subtrahitur, quam si ab ea plus subtraheretur. Sic, si
            dixeris differentiam chordarum maiorem portione, tunc medium erit
            maius et tamen plus subtrahitur quam prius, quando medietas
            portionis, quam minorem dicis, subtrahebatur, quod iterum est
            impossibile. Quare patet, si sexta cum portione excedit quadrantem
            in medietate portionis, necesse erit portionem aequari
            differentiae chordarum et per consequens sextam aequari quintae,
            quod fuit intentum.

            [image: link to parallel text] 65. Ex his sequitur circuli facilis quadratura.
            Nam medium proportionale inter bh et
            diametrum circuli est latus tetragoni cum circulum quadrantis
            (cfr. figura 28). Sequitur etiam quod si bx
            aequatur bh, quod in circumvolutione
            describit portionem conicam, cuius superficies aequatur medietati
            sphaerae, et longitudo quartae circumferentiae maioris circuli
            eiusdem sphaerae, quod singulariter fuit quaesitum.

            [image: ]
Fig. 28
[image: link to parallel text] 66. Adhuc aliter recta quadranti aequalis hoc
            modo reperitur. Si linea sexta cum portione quintae lineae
            aequantur quadranti, eas inter se aequari necesse est. Ut si
            servata figura praemissa quinta fuerit bpq
            et sexta ep, dico si ep et pq aequantur
            quadranti be, tunc ep erit aequalis pq
            (cfr. figura 29).

            [image: ]
Fig. 29
Pro cuius ostensione primo suppono quod si de b quintam duxeris ad medium cd quartae, ut est v,
            portio illius ut tv erit inter portiones
            brevissima et continue supra et infra augetur. Secundo suppono
            quod sexta cum portione illa minima est maior quadrante, et ita
            oportet sextam cum portione, quae debent aequari quadranti, esse
            minores. Tertio suppono quod possit sexta dari cum portione
            aequalis quadranti. Quarto suppono quod de e versus b sextae cum
            portionibus simul continue augentur, licet portiones etiam
            minuantur. Istae suppositiones cuilibet de facili patere possunt,
            ex quibus ostenditur propositio.

            [image: link to parallel text] 67. Nam si dixeris sextam ep maiorem portione pq,
            erit igitur maior medietate quadrantis. Esto igitur quod er sexta aequetur medietati quadrantis, et sit
            portio rs, quae erit maior pq per primam suppositionem. Erit igitur er et rs maior quadrante
            et tamen simul sunt minores ep et pq per quartam suppositionem, quae ponuntur
            aequari quadranti. Et ita minor erit maior maiore, quod est
            impossibile. Sic si dixeris ep minorem pq, sequitur idem; nam tunc erit minor
            medietate quadrantis. Esto igitur quod et
            aequetur medietati quadrantis, cuius portio tv erit minor quam portio pq, quare et et tv erunt minores ep et
            pq. Sic maior erit minor minore, quod
            similiter est impossibile, et quia sextam cum portione posse
            quadranti aequari est manifestum. Patet hoc esse, quando sexta
            aequatur portioni quintae, quod est intentum.

            [image: link to parallel text] 68. Ex hac iam dicta inventione, si vis, elicias,
            quomodo omnem portionem superficiei sphaerae poteris reducere in
            superficiem conicam aut cylindricam, etiam si tibi proportio
            ipsius superficiei sphaerae ad totius sphaerae superficiem ignota
            foret, hoc modo. Et sit exempli gratia quadrans ut prius abc, et huius arcum notum signa, qui sit hc, et sit hc duae
            tertiae quadrantis (cfr. figura 30).

            [image: ]
Fig. 30
Trahe lineam rectam de h super ac orthogonaliter, quae sit ho. Erit igitur ho
            semichorda duplicis arcus. Accipe rectam aequalem curvae hc et sit tv, huius
            medietas sit chorda ck. Duc de h per k aequalem tv et sit hkr. Fac
            igitur de puncto aliquo lineae hp, qui sit
            s, lineam transire per r ad aq, quae sit sq, ita quod linea de h
            ad punctum, ubi aq lineam tangit, scilicet
            q, perducta sit dupla ad hs. Et erit superficies cylindrica ex hs aequalis superficiei sphaerali ex arcu hc et superficies conica ex hq et mediae, quae de h
            ad sq ducentur, uti in praemissa, et hoc
            patet totum ex praemissis. Et ita habes artem, quomodo, si
            sciveris cylindricam superficiem aequalem sphaerali, poteris ex
            hoc reperire conicam aequalem, cuius longitudo sit ut longitudo
            lineae curvae circuli maioris.

            [image: link to parallel text] 69. Et quoniam ex Archimede artem habes omnem portionem superficiei sphaerae in
            circularem planam reducendi et ex praemissis patet, quomodo illa
            in cylindricam reducitur et consequenter in conicam, ex quibus et
            isto nunc praemisso patet, quomodo omnem curvam, etiam si ignoras
            eius habitudinem ad totum maiorem circulum, poteris in rectam
            reducere, et haec ars subtilis est excedens circuli quadraturam.
            Et e converso, si habueris lineam rectam aequalem curvae, poteris
            superficiem cylindricam et alias conicas consequenter reperire
            illi sphaerali aequales.

            [image: link to parallel text] 70. Ex quo iam patefecit Archimedes in quadratura parabolae, quomodo superficies illa
            potest in quadratam reduci ostendens superficiem illam ex recta et
            sectione coni rectanguli esse sesquitertiam ad triangulum habentem
            basim ipsam rectam parabolae et altitudinem ipsius parabolae. Et
            nunc constat, quomodo quadratum potest in circularem duci
            superficiem ac quod illi possit cylindrica et conica aequalis
            assignari. Ideo ex praemissis habes modum lineam curvam sectionis
            illius parabolae in rectam reducendi, et si ingenium applicaveris,
            omnem curvitatem regularem etiam sectionis transversalis cylindri
            poteris sic rectificare.

            [image: link to parallel text] 71. Volo nunc investigare, quomodo per lunulas
            quadratura circuli investigetur, quam viam veteres frustra
            attemptarunt. Et est intentio inter latus polygoniae
            circumscriptum circulo et latus polygoniae inscriptum reperire
            lineam, quae secet lunulam ita, quod triangulus rectilinealis
            aequetur portioni circuli, cuius ille fuerit arcus
            (cfr. figura 31).

            [image: ]
Fig. 31
Puta esto quod super a centro circuli
            bc arcus sit tertia circumferentiae, cui
            ef latus trigoni circumscribatur lineis af et ae tractis, et cb linea sit chorda sive latus trigoni
            inscripti. Volo signare lineam inter ef et
            bc, quae sit ik,
            quae secet lunulam lmn ita, quod sit
            aequalis portionibus bil et ckn, ut aik triangulus
            aequetur abmc portioni circuli.

            [image: link to parallel text] 72. Pro cuius investigatione suppono latus
            inscripti esse minus arcu et circumscripti maius et plus maius
            quam inscripti minus. Secundo, quod duae lineae cadere possunt
            inter latus inscriptum et circumscriptum, quarum una aequetur
            arcui et alia aequet triangulum rectangulum portioni circuli; et
            vocetur prima, quae est latus inscriptum; secunda, quae aequatur
            arcui; tertia, quae aequat triangulum rectangulum portioni
            circulari; et quarta, quae est latus polygoniae circumscriptae.
            Tertio suppono quod illae quattuor lineae sic se habent, quod
            quando una crescit, omnes crescunt et quando una decrescit, omnes
            decrescunt; nam ad augmentum unius sequitur quod et alia augeatur.
            Quarto, quod quanto magis crescunt, tanto magis differunt et
            quanto magis decrescunt, tanto minus differunt. Quinto, quod
            quanto magis differunt lineae, tanto plus differunt potentiae
            earum.

            [image: link to parallel text] 73. Ex his sic arguo: Quanto quarta maior, tanto
            tertia maior et differentia linearum et potentiarum earum maior.
            Sic quanto secunda maior, tanto prima maior et differentia
            linearum et potentiarum earum maior. Sic quanto differentia
            potentiarum quartae et tertiae maior, tanto secundae et primae
            maior et differentia illarum differentiarum maior. Quare quanto
            quarta maior, tanto prima maior et differentiae potentiarum
            ipsarum maiores et differentia differentiarum quartae et tertiae
            ex una et secundae et primae ex alia maiores. Secundum igitur
            habitudinem differentiae potentiarum quartae et primae se habebunt
            differentiae quartae et tertiae ex una et secundae et primae ex
            alia, ita scilicet, quod si potentia secundae est maior potentia
            primae in aliqua quantitate et potentia quartae est dupla ad
            potentiam primae, erit potentia quartae maior potentia tertiae in
            dupla quantitate, et si est alia habitudo potentiarum quartae et
            primae, alia est habitudo quantitatum talium differentiarum.

            [image: link to parallel text] 74. Si negaveris et dixeris habitudinem potentiae
            quartae ad potentiam primae esse duplam et non excessum potentiae
            quartae super tertiam ad excessum potentiae secundae super primam,
            sed quod excessus potentiae quartae super potentiam tertiae sit ut
            tria et excessus potentiae secundae super potentiam primae sit ut
            unum: hoc dico implicare contradictionem. Nam sequitur quod prima
            et secunda lineae sunt minores et aequaliores quam prima et
            secunda, quae sic se habent, quod differentia est medietas. Quanto
            enim differentia excessuum minor, tanto lineae similiores et
            minores, et cum hoc sequitur, quod prima et secunda sint maiores
            quam prima et secunda, quae differunt in medietate differentiae
            quartae et tertiae. Nam quanto differentia quartae et tertiae
            magis excedit differentiam secundae et primae, tanto secunda et
            prima sunt maiores et inaequaliores. Erunt igitur maiores primis
            et secundis, ubi differentia est medietas, cum differentia ponatur
            una tertia differentiae quartae et tertiae. Sic erunt maiores et
            minores, similiores et dissimiliores, quod implicat. Simile
            inconveniens sequitur, si poneretur, quod differentia secundae et
            primae foret maior medietate quartae et tertiae. Et hoc
            inconveniens sequitur in omnibus, si habitudo excessuum potentiae
            quartae super tertiam et secundae super primam dicitur alia quam
            potentiae quartae super potentiam primae.

            [image: link to parallel text] 75. Si igitur hoc medio volueris lunulam
            abscindere seu circulum quadrare, sic facito, et sit in tetragono
            (cfr. figura 32).

            [image: ]
Fig. 32
Esto igitur quod super a centro bc quadrans sit descriptus. Trahe lineas
            sectores de a per b
            et c in infinitum, trahe chordam bc et latus circumscriptum eof et in o tangat
            arcum; trahe semidiametrum ao, signa deinde
            secundam lineam aequalem arcui, quae ponatur esse gh, et ubi secat ao,
            ponatur i. Deinde signetur tertia linea,
            quae sit kl, et ubi secat ao, ponatur m. Si igitur
            tertia, scilicet kl, talis est, quod eius
            potentia est in dupla quantitate minor potentia ef quam potentia bc
            potentiae gh, et cum hoc id, quod fit ex
            ductu ao in ih, est
            aequale ei, quod fit ex ductu am in ml, habes intentum; si non, varia, quousque
            eveniet.

            [image: link to parallel text] 76. Exemplum in numeris. Esto quod ao semidiameter sit 7, cuius quadratum 49; erit
            bc radix de 98 et ef
            radix de 196. Esto igitur quod gh ponatur
            11, erit eius quadratum 121, a quo subtrahe 98, manent 23. Duplum
            huius, scilicet 46, subtrahe de 196, manent 150. Si ductio 7 in 5
            cum dimidio aequaretur ductioni medietatis radicis de 150 in se
            sive am in ml, quod
            idem est, cum am sit ut ml, tunc haberes intentum, et lm esset costa quadrati aequalis circulo, et
            quarta circumferentiae esset 11. Sed si bene calculas, reperies 11
            parum excedere.

            [image: link to parallel text] 77. Est aliquantulum difficile in praxi reperire
            has lineas medias secundam et tertiam. Unde pro alleviatione
            laboris sic facito (cfr. figura 33): Fac lineam ac, quae aequetur 7 semidiametris, cuius medium
            sit b. Trahe orthogonales ad c et b, et sit dc ut ac et eb ut ab, et trahe
            lineam aed. Signa in cd semidiametrum et sit f ut semidiameter, et medietatem chordae
            quadrantis, scilicet bc in praemissa
            figura, signa in be et sit bg ut medietas chordae arcus quadrantis. Trahe
            lineam fg, et quia cd est potentia f
            radicis eius et bg radix be, tunc inter be et cd quaere potentias medietatum mediarum
            linearum, secundae scilicet et tertiae. Puta sit potentia
            medietatis secundae ut ik, et ubi secat fg, signa l et vide
            quantum ik excedit be, et fac cd in duplo
            excedere tertiam, quae sit mn, ita quod be excedat mn in dupla
            quantitate, qua ik excedit be, et ubi mn secat fg, pone o. Si tunc ex
            ductu mo in se idem eveniet, quod ex ductu
            semidiametri in li, habes intentum et mo duplicata erit costa quadrati circuli; si
            non, varia, quousque eveniet.

            [image: ]
Fig. 33
Et sicut in quadrante operatus es, proportionabiliter poteris
            in aliis arcubus prioribus attentis operari et lunulas abscindere
            et circulum rectilineare.

            [image: link to parallel text] 78. Volo autem adhuc alios quosdam possibiles
            modos tangere, quomodo scilicet omnis circulus immediate in quam
            volueris resolvitur polygoniam absque eo, quod peripheriam circuli
            curvam prius in rectam lineam resolvi oporteat, quos pro exercitio
            ad magis otiosos remitto.

            [image: link to parallel text] 79. Si quadranti circuli latera circumscriptae et
            inscriptae tetragonorum descripseris atque a centro circuli ad
            punctum, ubi circumscriptae latus circumferentiam contigerit,
            lineam duxeris et aliam a centro ad finem lateris triangulum
            claudendo traxerisque deinde a centro per aliquem punctum arcus ad
            latus circumscriptae lineam tali modo, quod alia linea
            aequedistans lateribus polygoniarum transiens de latere ad latus
            trianguli per eundem punctum arcus fuerit aequalis duabus
            portionibus, quas prior linea a centro ducta per eundem punctum de
            lateribus polygoniarum dictarum secaverit inter ipsam lineam et
            aliam, quae est latus trianguli, ad punctum contingentiae ductam:
            erit linea illa aequedistans medietas lateris polygoniae arcui
            correspondentis circulo aequalis.

            [image: link to parallel text] 80. Ut si super a centro
            describatur circulus, cui volo tetragonorum aequalem invenire
            (cfr. figura 34).

            [image: ]
Fig. 34
Quadrantem signo, qui sit bc, et traho
            latera tetragonorum, et sit latus tetragoni circumscripti de, et tangat circulum in f puncto. Traho af et
            ad et bc latus
            tetragoni inscripti, et ubi bc secat af, pono k. Traho deinde
            de a per aliquem punctum arcus bf lineam ad df et sit
            punctus in arcu g, et ubi secat latus bk, ponatur l, et ubi
            latus df, ponatur m;
            et per g traho aequedistantem ad df de af ad ad, et sit hgi. Dico si
            hi est aequalis lk
            et mf simul, hi est
            medietas lateris tetragoni circulo aequalis.

            [image: link to parallel text] 81. Pro intellectu huius primo considerandum quod
            si super a centro circulum descripseris et
            contingentem indefinitae quantitatis eidem in puncto f adiunxeris tracta linea af et deinde de a ad
            contingentem lineam ac duxeris, quae secet
            circulum in g puncto, duxerisque
            aequedistantem ad contingentem de puncto lineae af, qui sit o, per g in infinitum, illa erit, de qua per aliam
            lineam de a ad contingentem aequatrix
            abscinditur, et sit hrd ita quod or sit aequatrix. Quam sic voco, quia lunulae
            ogf, quam de area circuli abscindit,
            substituit hrg aequalem quantitate
            claudendo triangulum rectilineum aro
            aequalem portioni circuli ahf (cfr. figura
            35).

            [image: ]
Fig. 35
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Fig. 36
[image: link to parallel text] 82. Secundo considerandum figura cum contingente
            et linea, de qua aequatrix abscinditur, servatis, quod de aliquo
            puncto circuli potest chorda sic trahi, quod portio eiusdem inter
            af et ac addita ad
            cf aequetur illi dictae aequatrici, et sit
            punctus in circulo h et portio inter ac et af ik (cfr. figura
            36).

            [image: link to parallel text] 83. Tertio considerandum, quod figura priori cum
            contingente et linea de qua aequatrix abscinditur servatis, si
            alia mobilis linea iaceat super ac, quae
            sit al et illa versus sinistrum a fixo manente revolvatur, perveniet usque ad
            aliquem punctum circuli, a quo si ducitur chorda aequedistans
            contingenti usque ad lineam af portio
            illius inter ac et af addita ad cf
            aequabitur aequatrici, quae per al
            abscinditur. Et sit punctus ille in circulo h et semichorda hk et
            portio ik et abscisio aequatricis or. Nec potest esse alius punctus quam unus
            ille h, in quo sic eveniet; nam ante illum
            portiones excedunt aequatricem et post illum aequatrix vincit
            portiones. Hoc verum, si hf fuerit
            semiquadrans, et si non, varia g punctum,
            quousque eveniet (cfr. figura 37).

            [image: ]
Fig. 37
[image: link to parallel text] 84. Dico igitur hoc casu aequalitatis portiones
            esse aequales verae aequatrici et illam esse or. Si negaveris et dixeris portiones fore
            minores verae aequatrici et similiter or,
            tunc, si portiones deberent esse aequales, oporteret lineam de a, quae illas abscindere deberet, cadere inter
            c et d, et ita arcus
            gf foret minor quam esse deberet et lunula
            gof minor quam hrg.
            Sed quia dicis or minorem aequatrice,
            igitur aequatrix cadit supra or versus
            contingentem et or infra eam versus hk; quare ipsa or
            abscindit maiorem arcum quam aequatrix, et lunula gof erit maior quam hrg,
            et ita erit minor et maior. Sic si dixeris portiones maiores et
            or maiorem aequatrice, idem sequitur
            inconveniens. Patet igitur propositum.

            [image: link to parallel text] 85. Pandam nunc ultimo, quomodo simul reperiuntur
            quae volueris latera polygoniarum aequalium circulo, cuius haec
            est propositio.

            Si semidiametro circuli et semilateribus polygoniarum
            circumscriptarum et lineis complementi inscriptis linea de centro
            ad semilatus circumscriptae ducta abscindit minorem portionem de
            linea complementi unius inscriptae et maiorem de semilatere
            eiusdem circumscriptae, quae simul aequantur semilateri polygoniae
            aequalis circulo: tunc, si aliae lineae sic ductae fuerint per
            portiones talium linearum, quod ipsae portiones se habeant ad
            priores portiones semilaterum, sicut semilatera simul iuncta unius
            polygoniae ad semilatera simul iuncta alterius, tales similiter
            abscindunt portiones, minorem de linea complementi inscripta et
            maiorem de semilatere circumscriptae, quae aequantur semilateri
            talis polygoniae aequalis circulo (cfr. figura 38).

            [image: ]
Fig. 38
[image: link to parallel text] 86. Esto quod super a
            centro circulus sit descriptus, cuius semidiameter sit ab, tractis semilatere trigoni circumscripti
            bc et linea complementi de et tractis etiam semilatere tetragoni
            circumscripti bf et linea complementi gh. Et si volueris, poteris plurium
            polygoniarum trahere similiter semilatera. Trahe deinde lineam de
            a ad bc, et ubi
            abscindit de, pone i, et ubi bc, pone k. Deinde trahe aliam de a ad bc, et ubi
            abscindit gh, pone l, et ubi abscindit bc,
            pone m. Dico si abscisio minor gh, quae est gl, una cum
            maiore bf, quae est fm, aequantur semilateri quadrati aequalis
            circulo, tunc si abscisio minor de de, quae
            est di, se habet ad gl sicut bc cum de ad bf cum gh, et sic se similiter habuerit ck ad fm: erit di cum ck semilatus
            trigoni aequalis circulo, et habebit se ad semilatus quadrati,
            sicut se habent portiones dictae ad invicem. Et uti facis in
            illis, facito in omnibus polygoniis.

            [image: link to parallel text] 87. Procedit haec propositio ex eo. Nam ex
            varietate laterum diversarum polygoniarum aequalium uni circulo
            sequitur varietas laterum polygoniarum circumscriptarum et
            linearum complementi inscriptarum. Quare sicut se habent illa
            latera, ita et ista simul sumpta. Hinc et abscisiones, quae fiunt
            per lineas a centro ex lateribus ad constituendum semilatus
            polygoniae aequalis circulo, tenere debent eandem habitudinem ad
            invicem, ut eiusdem habitudinis latera efficiant.

            [image: link to parallel text] 88. Non est autem dubium lineam de centro
            portiones abscindere posse de semilateribus, quae aequentur
            quaesitae. Sed posset difficultas esse, quomodo sciri possint
            lineae complementi, quae additae ad semilatera polygoniarum
            circumscriptarum efficiunt latera polygoniarum eiusdem areae. Puta
            si de additum ad bc
            ponitur latus trigoni, quod tunc gh additum
            bf efficit latus aequalis tetragoni. Sed
            habitudo laterum de facili scitur ex superioribus. Ponitur autem
            linea complementi in trigono semilatus polygoniae inscriptae, ut
            est de, et alia complementa secundum hoc
            adaptantur. Dicuntur complementa, quia additae ad semilatus
            polygoniarum circumscriptarum constituunt semilatera polygoniarum
            aequalium arearum.

            [image: link to parallel text] 89. Posset etiam dubium esse, an portiones
            teneant habitudinem, quam debent. Unde poteris sic facere. Trahe
            ab in longum et similiter lineam de a per f in longum et
            lineam unam, quae sit no, aequalis bc et de, divide in duas
            portiones, quae se habeant ut gh ad bf, et sint op et pn. Hanc aequedistanter ad bc inter dictas lineas de a per b et per f colloca, et linea, quae de a per gh ducitur,
            abscindit portionem de op, quae se habet ad
            portionem abscisam de gh sicut est
            proportio laterum. Sit igitur portio in op
            linea oq, quae se habet ad gl sicut debet. Si igitur di est ut oq, tunc habes
            illam portionem. Sic facito de alia portione lineae no, quae sit rs, et sit
            rs ut pn. Applica
            inter lineas de a per b et f ut prius cum alia
            portione, et si portio, quae per lineam aq
            in rs abscinditur, quae sit st, fuerit ut ck, habes
            intentum; si non, varia, ut fiat. Et haec est via universalis in
            omnibus polygoniis.

            [image: link to parallel text] 90. Elicias ex hoc te artem habere omnem
            portionem circuli, quae per sectores a centro abscindi potest,
            etiam ad totum improportionalem in rectilinealem superficiem
            reducere posse et omnem portionem circumferentiae etiam
            improportionalem ad totum medio aequatricis secundum praemissa in
            lineam rectam convertendi.

            [image: link to parallel text] 91. [Patet nunc circuli quadraturam semper
            quaesitam hactenus, ut creditur, non inventam sufficienter
            explicatam. Nam aut ipsa sciri potest per reductionem rectilineae
            in curvam peripheriam, et eo modo tradita est in primo libello,
            aut e converso per reductionem curvae peripheriae in rectam
            lineam, et ita duplici modo eam reperies in hoc secundo libello
            traditam, aut simul cum reductione curvae in rectam reperiendo
            costam quadrati aequalis circulo, aut sine omni reductione rectae
            in curvam vel e converso, sed simpliciter reperiendo costam
            quadrati, et hi modi similiter reperiuntur supra annotati. Sic
            constat hanc partem hactenus ignoratam abunde sufficienterque
            explicatam, ex qua alia sequuntur, quae sine ista sciri non
            poterant, quae sunt mathematicae complementa. Amen.]

            
              FACILLIMA CIRCULI RECTILINEATIO

              [image: link to parallel text] 92. Descripto
              super a centro circulo et tracta diametro
              bac atque maxima chorda in infinitum
              extensa, quae orthogonaliter secet bac,
              quae sit dae, si tunc super aliquo puncto
              ac, qui de b
              distet secundum longitudinem chordae arcus tertiae partis
              circuli, qui sit f circulum, cuius
              semidiameter sit fb, descripseris, ille
              de maxima chorda abscindet rectam gh
              medietati circuli aequalem vel propinquam. Quod si de b et c rectas ad g h traxeris, erit superficies bgch aequalis vel propinqua superficiei
              circuli bcde (cfr. figura 39).

              [image: ]
Fig. 39
[image: link to parallel text] 93. Ad cuius
              intellectum describe circulum super a,
              qui sit bcde ut prius, et trahe chordam
              arcus sextae partis circuli, et sit lm,
              et quartae partis, quae sit ik, et
              tertiae partis, quae sit no, et
              considera, ex quo omnis chorda est minor arcu et plus chorda
              maioris arcus, quod tunc circulus, qui debet per b transire et habere centrum in bc diametro et secare de chorda extensa
              aequale arcui, ille habebit necessario centrum ultra a versus c tanto
              distantius quanto arcus maior, cui chorda subtenditur. Et
              minimus omnium, quo non potest dari minor, habebit centrum in
              a, cuius semidiameter ab. Maximus autem circulus habebit centrum
              ultra a versus c
              maxime distans ab a, cuius semidiameter
              maxima. Qui circulus abscindere debet de maxima chorda rectam
              aequalem semicirculo, et illa maxima semidiameter quaeritur
              (cfr. figura 40).

              [image: ]
Fig. 40
[image: link to parallel text] 94. Secundo est
              attendendum quod chorda aliqua potest signari, quae sit media
              inter chordas ei compares. Et voco compares chordas, quarum una
              minor signata et alia maior sic, quod per arcum aequalem distent
              a signata, uti ik ab lm et no. Nam cum il arcus sit ut in,
              tunc lm et no
              dicuntur compares ik. Dico quod potest
              chorda signari, ubi omnes duae compares habent potentias, quae
              simul iunctae sunt maiores duabus potentiis chordae mediae, ut
              si ad lm chordam compares aliquae
              traherentur, earum potentiae semper erunt maiores duabus
              potentiis lm. Potest etiam chorda media
              signari, ubi potentiae omnium duarum comparium erunt minores
              duabus potentiis chordae mediae, ut comparium ad no. Ita potest signari chorda, ubi omnium
              duarum comparium potentiae erunt aequales duabus potentiis
              chordae, quia quanto potentia minoris comparis est minor
              potentia chordae mediae, tanto maioris comparis est maior, et
              quia tunc omnium duarum comparium potentiae erunt aequales
              duabus potentiis chordae mediae, patet illam esse chordam ik. Nam potentia lm
              cum potentia no aequantur duabus
              potentiis ik. Sic et potentia maximae
              chordae, scilicet de, cum compari,
              scilicet cum potentia minimae chordae, aequabitur duabus
              potentiis ik. Et quia potentia minimae
              chordae non est aliqua, patet potentiam diametri aequari duabus
              potentiis ik sive lateris tetragoni
              inscripti. Ita de omnibus duabus comparibus ik. Hoc verum.

              [image: link to parallel text] 95. Tertio
              suppono quod ik bis excedit duas
              semidiametros, scilicet maximi circuli, qui quaeritur, et
              minimi, cuius semidiameter est ab , et
              hoc notum relinquo. Ex quo elicio duas compares chordas ad ik dabiles, quae simul iunctae aequabuntur
              illis duabus semidiametris. Nam dabiles sunt compares maiores,
              scilicet prope ik, et dabiles sunt
              minores distantissime ab ik, igitur et
              aequales.

              [image: link to parallel text] 96. Quarto
              elicio ex his no esse semidiametrum vel
              prope quaesiti circuli. Nam cum potentiae comparium
              aequivalentium duas semidiametros aequentur duabus potentiis ik, et lm sit
              semidiametro minimi circuli, cuius potentia si de duabus
              potentiis ik subtrahitur, remanet
              potentia no. Quare no erit semidiameter maximi circuli
              quaesiti.

              [image: link to parallel text] 97. Quinto
              elicio, quod si no est semidiameter, tunc
              si in af reperitur punctus, qui sit p ita, quod ap se
              habeat ad af sicut sagitta arcus ibk ad sagittam dbe
              semicirculi, erit p centrum circuli et
              pb eius semidiameter, qui de ik chorda extensa abscindit qr, quae duplicata aequabitur gh. Et si de omnibus duabus comparibus sic
              feceris ex proportione sagittarum centro inveniendo,
              abscisiones, quae de extensis comparibus fient, simul iunctae
              semper aequabuntur gh, licet non omnis
              abscisio unius comparis aequetur suo arcui, et ita de infinitis
              comparibus. Per eandem regulam abscindere poteris rectas
              aequales semicirculo. Si vero no est
              semidiameter circuli, non concordabunt istae abscisiones. Ideo
              varietur, quousque concordabunt. Quod autem superficies bgch aequetur superficiei circuli, satis
              patet ex praemissis.

              [image: link to parallel text] 98. Sexto
              elicias, quomodo portiones circuli inter compares cadentes se
              habent ad circulum, sicut se habet arcus inter compares ad
              circumferentiam circuli. Puta inter lm et
              no portio circuli est sexta circuli, quia
              arcus ln et arcus mo sunt sexta circumferentiae. Quanto enim
              portio inter ik et lm est minor duodecima, tanto portio inter
              ik et no est maior
              duodecima parte circuli. Et per hanc considerationem poteris
              varias abscisiones portionum circuli facere et varios triangulos
              aequare. Et haec sufficiant.

            
          
        
  Declaratio rectilineationis curvae, quae
              ponitur in primo modo secundi libelli De
              mathematicis complementis

              
          
            Prima suppositio

            [image: link to parallel text] 1. Sexta cum medietate portionis quintae, quae
            cadit inter curvam et quartam, potest aequari be curvae. Haec suppositio certa est, ut in
            littera (cfr. figura 1).

            [image: ]
Fig. 1

          
            Secunda suppositio

            [image: link to parallel text] 2. Sexta cum medietate portionis et quinta cum
            medietate differentiae chordae, quae est sexta, et partis quintae,
            quae etiam est chorda, possunt aequari be
            curvae bis. Illa suppositio probatur, uti praemissa in textu
            probatur. Nam dabilis est locus, ubi sunt maiores be curva bis, et ubi minores, et ideo et, ubi
            aequales.

            
            [image: link to parallel text] 3. Dico hanc secundam suppositionem non habere
            locum nisi ubi differentia est ut portio, et hoc probat prima
            suppositio. Nam si dixeris in secunda suppositione differentiam
            maiorem portione, erit igitur quinta minor sexta. Quae est sextae
            aequalis, quando differentia chordarum sicut portio quintae, et
            minor, si differentia maior, et maior, si differentia minor, ut de
            se patet.

            
            [image: link to parallel text] 4. Esto igitur, quod ad sextam addatur tota
            portio et ad quintam tota differentia. Tunc erunt aequales, et
            quaelibet maior be curva. Si igitur
            subtrahitur aequale, ut quaelibet sit sicut be curva, tunc necesse est, quod de sexta cum
            portione subtrahatur plusquam medietas portionis, cum portio
            ponatur minor differentia, et oportet quod de differentia
            subtrahatur minus quam medietas, et tantum minus eius medietate,
            quantum prius plus medietate portionis, ut simul maneat medietas
            portionis et medietas differentiae, quae additae sextae et quintae
            efficiant be curvam bis , ut de se patet.
            Sext a igitur cum medietate portionis erit tunc maior be curva; non erit igitur sexta cum medietate
            portionis aequalis be curvae differentia
            portionem excedente.

            [image: link to parallel text] 5. Puta tu dicis, quod bg
            quinta cum medietate differentiae fe sextae
            et bg chordae quintae,et ef sexta cum medietate fg portionis simul aequentur be curvae bis, et dicis differentiam fe et fb maiorem fg portione. Sit igitur linea hi ut quinta bg, cui
            addatur differentia quae sit ut ik. Sit
            alia linea sub dicta descripta lm ut sexta
            fe, cui addatur portio fg, et sit mn ut fg; linea hk est ut
            linea ln. Signetur medietas differentiae,
            quae sit io, et medietas portionis, quae
            sit mp. Cadat orthogonaliter inter p et o, quae sit rs. Quanto igitur ms est
            minus medietate portionis, quae est mp,
            tanto ir maior medietate differentiae, quae
            est io. Erit igitur ls aequalis be curvae.
            Sic sexta lm cum medietate portionis est
            maior be curva. Ubi ergo sexta cum
            medietate portionis debet esse aequalis be
            curvae, medietas differentiae non erit maior medietate portionis
            (cfr. figura 2).

            [image: ]
Fig. 2
[image: link to parallel text] 6. Sic si dixeris differentiam minorem portione,
            sequitur sextam cum medietate portionis minorem be curva. Oportet igitur, si sexta cum
            medietate portionis debet esse aequalis be
            curvae, quod differentia sextae et chordae quintae non sit maior
            aut minor portione. Quo casu probat primum praesuppositum
            secundum, scilicet quintam cum medietate differentiae et sextam
            cum medietate portionis tunc aequari be
            curvae bis, quando differentia fuerit ut portio, et hoc est,
            quando quinta est ut sexta, et hoc est intentum.

            [image: link to parallel text] 7. Ecce mirabilem modum ostensionis, quoniam sive
            dixeris differentiam aequari portioni in secunda suppositione sive
            non aequari, sequitur in prima suppositione differentiam aequari
            portioni, et per consequens et in secunda suppositione. Et est
            quaedam coincidentia oppositorum, quoniam per hoc, quod dicis
            differentiam non aequari portioni, sequitur, quod aequetur, et
            falsum interimit seipsum.

          
        
  De una recti curvique mensura

          [image: link to parallel text] 1. Quia vidi practicum magisterium commensurationis
          curvi et recti deesse geometricis, ideo ipsos imperfectos et plura,
          quae possibilia fieri vident, ad actum deducere non posse, conatum
          igitur non parvum adhibui, ut ipsam artem assequerer. Quam si
          repperi, tu qui haec leges, iudicabis.

          [image: link to parallel text] 2. Commensurari autem curvum et rectum dico, quando
          una mensura mensurantur, puta quando recta linea tot pedes habet
          rectos quot arcus curvos.

          
            Propositio prima

            [image: link to parallel text] 3. Dato area rectam ei commensurabilem assignare
            (cfr. figura 1).

            Sit bc datus arcus, cuius a medium, et trahatur chorda bc et in illa punctus aequedistans de a et b, qui sit d, et hic est punctus huius magisterii. De illo
            igitur per b continua rectam, quae sit de, taliter, quod si de a chordam ag, quae sit
            ut medietas de, per de traxeris, illa chorda vadat per f punctum lineae de. Sit
            autem df quarta pars de. Tunc de linea recta
            est commensurabilis bc arcui.

            [image: ]
Fig. 1
[image: link to parallel text] 4. Ad hoc probandum praesuppono duo. Primo, quod
            de sic signari potest, quod inter f punctum, per quam vadit chorda, ut
            praefertur, et e, finem lineae de, portio aequetur tribus quartis
            commensurabilis rectae. Patet de se. Nam certum est, quod taliter
            signari potest, quod fe est plus, ut in
            secunda figura, et taliter etiam, quod est minus, ut in tertia
            figura; igitur et taliter, quod nec plus nec minus. Secundo
            praesuppono, quod quanto de est minor,
            tanto fe in habitudine ad de est minor et df
            maior, et quanto maior, huius contrarium. Hoc etiam per se patet
            ad oculum in secunda et tertia figuris.

            [image: link to parallel text] 5. Dico igitur primum praesuppositum verificari,
            aut quando de est quaesita, scilicet
            commensurabilis arcui, aut quando minor aut quando maior. Si
            primum, habeo intentum; nam oportebit tunc df esse necessario quartam partem de. Si dicis verificari, quando de est minor commensurabili, hoc est
            impossibile. Nam cum tunc ex secunda suppositione fe sit minor in habitudine ad de et df maior quarta in
            commensurabili, et secundum te aequabitur tribus quartis
            commensurabilis; non erit de minor
            commensurabili, sed maior. Sic si dicis verificari, quando de est maior commensurabili, similiter implicat
            contradictionem.

            [image: ]
Fig. 2

          
            Propositio secunda

            [image: link to parallel text] 6. Datae rectae arcum dati circuli
            commensurabilem assignare (cfr. figura 2).

            Sit data recta de et datus circulus,
            cuius centrum t et diameter stv et a medium omnium
            arcuum. De a trahe chordam ag, quae sit ut medietas de, et in de signa eius
            quartam, quae sit df, et applica de aequedistanter ad tv,
            taliter quod f cadat super ag chordam, et ubi secat circumferentiam
            circuli, pone b. Si tunc d aequedistat de b et
            a, erit ba medietas
            arcus quaesiti. Continua igitur bd,
            quousque compleatur chorda in c, et habes
            bc arcum commensurabilem de rectae. Totum patet ex praemissa.

            [image: link to parallel text] 7. Ut autem videas d esse
            punctum huius magisterii, qui si ag chorda
            est ba arcui commensurabilis, ab f sectione ubi ag secat
            bcd, ipse punctus per medietatem ag distat, considera, quod quanto bc chorda est maior, tanto d de b et a plus et de centro circuli minus distat, et
            quanto minor, huius contrarium; et hoc de se patet
            (cfr. figura 3).

            [image: ]
Fig. 3
In maxima igitur chorda d minime distat
            a centro circuli et maxime de b et a; in minima chorda maxime distat de centro et
            minime de b et a.
            Unde d in maxima chorda est in centro
            circuli, et in minima in circumferentia eius. Sed certum est, quod
            d sive in maxima chorda sive in minima
            aequedistat de b et a; igitur sic in omnibus intermediis. Unde
            sequitur, quod si bc est chorda arcus
            tertiae partis circumferentiae circuli, d
            punctus a centro et de b et a aequedistabit.

            [image: link to parallel text] 8. Adhuc sic de a potest
            trahi ah chorda per bc, quam in i puncto
            secet (cfr. figura 4). Dico aih sic potest
            trahi, quod ai erit distantia puncti d de a in illa chorda
            ah. Hoc certum.

            [image: ]
Fig. 4
Aut igitur hoc erit, quando ah est ut
            bc, et tunc i sectio
            aequedistabit de b et a, et erit d utriusque,
            et est intentum. Aut ah est minor, et hoc
            non est possibile, quia tunc ai esset maior
            quam prius, quando aequalis; aut quando maior, et est iterum
            impossibile, quia ai minor quam prius,
            quando aequalis.

          
          
            Propositio tertia

            [image: link to parallel text] 9. Arcui semicirculi rectam et areae eius curvae
            rectilinealem commesuraliles designare (cfr. figura 5).

            [image: ]
Fig. 5
Sit circulus et bc arcus semicirculi,
            cuius medium a, et d
            punctus magisterii aequedistans de a et b, puta hoc casu centrum circuli. Et trahe ad lineam, deinde trahe db in continuum, et sit de, ita quod si medietatem de feceris chordam ag,
            quae de a per de
            trahitur, ipsa transeat per f punctum de, qui f punctus distet
            de d per quartam partem de modo quo supra. Deinde claude orthogonium
            per ae latus. Dico aream ade orthogonii commensurabilem areae
            semicirculi, et de commensurabilem arcui
            bc. Secundum patet ut supra. Primum patet
            eodem modo ut prius per duo supposita, quorum primum est: de posse signari et per ea orthogonium claudi, taliter quod si ducitur
            chorda, quae sit medietas de de a per de, ut sit afg, area inter afe
            cadens erit commensurabilis tribus quartis areae semicirculi.
            Patet, quia datur, ubi est plus et ubi minus, igitur et ubi nec
            plus nec minus. Secundo praesuppono, quod quanto de fuerit minor, tanto illa area afe est minoris habitudinis ad totam aream
            orthogonii ade, et quanto maior, maioris.
            Primum igitur praesuppositum aut verificatur, quando area
            orthogonii ade est commensurabili areae
            semicirculi, et habetur intentum; aut ubi minor seu maior, et
            utrumque implicat contradictionem praecise modo quo supra.

            [image: link to parallel text] 10. Palam igitur est, quod si orthogonius, cuius
            unum latus est semidiameter et aliud cum illo rectum angulum
            faciens est commensurabile toti circumferentiae circuli: area
            illius orthogonii est commensurabilis areae circuli. Et quia
            quaelibet polygonia in aliam verti potest, igitur poteris areae
            circuli commensurabilem aream trianguli, quadranguli, quadrati,
            pentagoni et cuiuscumque alterius polygoniae assignare, et
            cuiuslibet partis circuli etiam circulo incommensurabili. Dare
            etiam angulos poteris datarum linearum habitudinis et figurarum
            omnium unius in aliam commensurabiliter: dico mirabiles
            transmutationes facere salva cuiuslibet figurae capacitate et
            propria invariabilique natura, et ad multa occulta, quae vix
            enarrari possunt, hac arte pervenies, etiam in sectionibus et
            uniformiter difformibus curvitatibus. Etiam angulos et instrumenta
            componere poteris, cum quibus praemissa facillime et subito
            facies, quae tuae industriae relinquimus.

            [image: ]
Fig. 6
[image: link to parallel text] 11. Area agbf
            commensuratur medietati areae circuli et area abe commensuratur areae circuli
            (cfr. figura 6). Medium proportionale inter ad semidiametrum et ed
            rectam medietati circumferentiae circuli commensurabilem, quam
            nona sexti Euclidis reperire docet, est costa quadrati, cuius area
            commensuratur circulo. df recta
            commensurabilis est octavae circumferentiae circuli, ideo area adf orthogonii commensuratur octavae areae
            circuli. Ideo quando habes rectam arcui commensurabilem, habes et
            aream rectilinealem areae portionis circuli commensurabilem.

            Finis.

          
        
  Dialogus de circuli quadratura. Dialogus
              inter cardinalem sancti Petri, episcopum Brixinensem, et Paulum
              physicum Florentinum, de circuli quadratura

              
          [image: link to parallel text] 

          
          PAULUS. Pater optime, quia me nosti a puero veritatem
          quaesivisse, quae in mathematicis clarius videtur relucere, atque
          quantum cupiam hactenus ignotam circuli quadraturam: si igitur post
          mihi missos tuos de mathematicis complementis, utique mihi obscuros
          atque incertos libellos, alius certior modus incidit, rogo
          communices.

          
          NICOLAUS CARD. Immo facilis et ut puto certus.

          PAULUS. Dicito, quaeso.

          
          [image: link to parallel text] 2. NICOLAUS. Omnia tibi nota scio, quae ad rem
          pertinent, solum hoc unico dempto, scilicet ut datae circumferentiae
          circuli scias rectam lineam ei aequalem assignare.

          PAULUS. Ita est. Nam mihi ex Archimede notum est, si semidiametrum circuli duxero in lineam
          aequalem semicircumferentiae, oriri quadrangulum circulo
          aequalem.

          
          [image: link to parallel text] 3. NICOLAUS. Ut igitur tibi pandam conceptum circa
          id, quod restat, accipe propositionem: Si chorda quadrantis dati
          circuli fuerit addita semidiametro eiusdem, oritur diameter circuli
          circumscripti trigono isoperimetro circumferentiae dati circuli
          (cfr. figura 1).

          [image: ]
Fig. 1
Puta sit datus circulus super a descriptus
          bcde et bc quadrans,
          tracta chorda bc et lineis ab et ac, et sit alius
          circulus super eodem a centro descriptus,
          cuius diameter fg sit ut ab et bc, scilicet gh ut ba et hf ut bc, et inscribatur
          trigonus ikl. Dico illum trigonum rectilineum
          aequari circumferentiae curvae bcde.

          PAULUS. Facilis est haec praxis atque carissima, si hoc verum
          ostenderis.

          
          [image: link to parallel text] 4. NICOLAUS. Conabor. Servata descriptione dati
          circuli lineam ac continuabo in infinitum,
          quae sit ma. Dico non dubium de b ad am lineam aliquam
          posse lineam duci, quae sic se habet, quod si ei additur alia linea,
          quae se habeat ad ipsam sicut costa ad diametrum quadrati, exsurget
          linea aequalis diametro circuli circumscripti trigono isoperimetro
          dati circuli (cfr. figura 2).

          PAULUS. Admitto. Nam potest dari linea sic de b ad am tracta, cui si
          additur alia habens se ad ipsam ut costa ad diametrum, oritur linea
          minor diametro circuli circumscripti trigono isoperimetro dati
          circuli. Ut si trahitur ad punctum prope a,
          quae ponatur esse n, et sic potest dari alia,
          quae ad punctum prope m, puta o, trahatur, quae cum costa sit maior. Igitur
          inter n et o erit
          punctus, ad quem si trahitur linea de b, illa
          cum costa erit aequalis, nec maior scilicet nec minor diametro
          circuli circumscripti trigono isoperimetro dati circuli.

          [image: ]
Fig. 2
[image: link to parallel text] 5. NICOLAUS. Bene dico igitur, quod sicut si
          acceperis bn cum quotquot volueris costis
          suis, linea quae oritur erit minor diametro circuli circumscripti
          trigono et tot semidiametris dati circuli, quot costas addideris,
          una costa dempta. Et si acceperis bo cum tot
          costis suis sicut volueris, exsurget linea maior semidiametro
          circuli circumscripti trigono et tot semidiametris dati circuli,
          quot costas addideris, una dempta. Igitur etiam erit punctus inter
          n et o, ad quem si de
          b lineam traxeris, sic se habebit, quod ipsa
          erit aequalis diametro circuli circumscripti trigono et tot
          semidiametris dati circuli, quot costas addideris, una dempta. Hoc
          autem non est possibile nisi in puncto c,
          cuius costa est ut semidiameter dati circuli, scilicet ut ba; alias, si costa foret maior aut minor quam
          ba, non erit hoc possibile.

          [image: link to parallel text] 6. PAULUS. Fateor primum, scilicet quod bn cum tot costis sicut placuerit sumptis maneat
          minor diametro circuli circumscripti trigono isoperimetro et tot
          semidiametris dati circuli, una dempta. Intelligo una dempta, quia
          unam costam iungis lineae bn pro diametro
          circuli circumscripti; nam cum bn cum costa
          sit minor quam illa diameter et costa sit minor quam ab, patet totum. Sic contrario modo se habet
          linea bo, et etiam patet. Est etiam certum,
          si sic debet fieri quoad aequalitatem in aliquo medio puncto, quod
          ille sit c ob rationem quam dixisti. Si enim
          costa foret minor aut maior ab linea, nullo
          modo sequeretur. Sed quid, si quis negaret punctum talem dari inter
          n et o?

          NICOLAUS. Qui negat inter minus et maius cadere medium aequale,
          negat dari posse trigonum isoperimetrum circulo. Ego autem
          praesuppono quadraturam circuli possibilem et per consequens omnia,
          sine quibus non est possibilis.

          [image: link to parallel text] 7. PAULUS. Possem dicere nihilominus possibilem,
          sed non esse hoc possibile de quotquot costis ad lineam addendis, ut
          diameter illa circuli circumscripti trigono et tot semidiametris
          dati circuli una dempta oriantur, quia possem dicere, quod punctus
          cadat inter n et c,
          qui ponatur esse p, et quod linea bp cum costa aequetur diametro dicti circuli
          circumscripti.

          [image: link to parallel text] 8. NICOLAUS. Tunc non negas, quin si bp caperetur cum duabus costis, quod tunc foret
          aequalis diametro dicto, sed cum hoc minor semidiametro dati
          circuli, quia costa minor quam ab.

          PAULUS. Quomodo negarem hoc?

          NICOLAUS. Esto igitur, quod recipiam punctum supra p, qui sit q, ubi bq cum costa sit tantum maior diametro dicto,
          quantum una costa minor linea ab; hoc quidem
          tunc est possibile. Nonne hoc dato bq cum
          duabus costis valeret dictum diametrum et cum hoc semidiametrum
          dati?

          PAULUS. Quis dubitat?

          NICOLAUS. Quid, si quaererem lineam, quae cum costa excederet
          diametrum dictam, quantum duae costae sunt duabus semidiametris dati
          circuli minores?

          PAULUS. Oporteret punctum esse adhuc propinquiorem puncto c.

          NICOLAUS. Quid, si adhuc pluribus costis additis velles lineam
          pluribus semidiametris aequari?

          PAULUS. Necesse foret continue punctum accedere ad c.

          NICOLAUS. Recte dicis. Si igitur in infinitum sic processeris,
          necessario ultimo ad c punctum devenires, cum
          ante c punctum costa semper sit minor ab.

          PAULUS. Optime dicis.

          [image: link to parallel text] 9. NICOLAUS. Constat igitur, quod hoc non est
          impossibile, scilicet quod inter n et o cadat punctus, ad quem linea ducta sic se
          habeat, quod quotquot costas ei addideris, ipsa erit aequalis
          diametro circuli circumscripti trigono isoperimetro et tot
          semidiametris dati circuli, quot addideris costas una dempta; sed
          ille erit c punctus. Et si dixeris punctum
          ultra c versus o esse,
          idem inconveniens sequitur contrario modo arguendo, quia devenietur
          necessario iterum ad c punctum.

          [image: link to parallel text] 10. PAULUS. Non possum negare quin ita sit, ut
          clare ostendisti. Manifeste enim constat, quod qui punctum citra vel
          ultra c dixerit esse, ille errat, et error
          convincitur ex ipsius positione, quoniam omnis linea maior bc cum costa sua est maior diametro circuli
          circumscripti trigono isoperimetro, et minor cum costa est minor
          diametro.

          NICOLAUS. Posset adhuc alia via id ipsum ostendi, et plures modi
          sunt diametros circulorum inscriptorum et circumscriptorum
          polygoniis isoperimetris datis circulis faciliter reperiendi ex
          scientia, quod capacissima polygonia infinitorum laterum coincidit
          cum circulo. Sed sufficit iste modus; reliquum ad te remitto.

          [image: link to parallel text] 11. PAULUS. Satis est scire modum curvam
          circumferentiam in rectam lineam transmutandi et converso rectam in
          curvam, ex quo omnia, quae hactenus in mathematicis ignorabantur,
          possunt elici, prout in mathematicis tuis tetigisti complementis.
          Qui igitur reduxerit curvam in rectam, ducat semidiametrum dati
          circuli in semirectam aequalem circumferentiae. Puta sit rs ut ab et st ut medietas trium linearum ikl, concludendo quadrangulum rstv, qui erit ut area circuli bcde, reperiat medium proportionale inter rs et st per nonam sexti
          Euclidis, et sit xy medium proportionale
          scilicet costa quadrati, et erit xy&z
          quadratum aequale circulo (cfr. figura 3). Ista nota sunt, et
          ideo tibi Nicolao, patri optimo, gratias ago, quod tot tuis curis
          non obstantibus dignatus es tuum ingenium ad hanc rem ab omnibus
          doctis in mathematicis desideratam et non repertam applicare, et
          post multos labores et varios modos facillimam atque clarissimam
          inventionem tuam propalare, et inquisitores a fatiga magna
          relevare.

          [image: ]
Fig. 3
Finis. Brixinae. 1457.

          
            ‹Appendix›

            [image: link to parallel text] 12. Punctus stat in hoc, scilicet in processu in
            infinitum. Nam si est punctus ille, ad quem linea de b ducta cum costa sic se habet, quod si costas
            infinitas addideris, non secus feceris, quam si ba infinities ad diametrum circumscripti
            trigono isoperimetro addideris. Clarum est tunc lineam cum costa
            aequari diametro circumscripti et costam aequari ba, et erit c
            punctus.

            [image: link to parallel text] 13. Si vero negatur processus, tunc clarum est,
            quod qualiscumque punctus signetur citra c,
            etiam si bc ponitur cum costa excedere
            diametrum circumscripti, tunc semper certus numerus costarum
            additus ad lineam cum costa efficit diametrum circumscripti et tot
            lineas ba, et potest semper ille numerus
            augeri, si punctus magis accedit ad c, et
            numquam cessat illa adauctio, quia non est punctus citra c, ubi linea cum costa in numeris excedat
            diametrum circumscripti, quantum infinitae costae ab infinitis
            lineis ba exceduntur, cum quaelibet costa
            in aliqua quantitate sit minor ba linea.
            Quae quantitas infinities multiplicata maior semper erit quam
            quantitas excessus lineae cum costa diametrum circumscripti
            excedentis.

            [image: link to parallel text] 14. Adhuc dico: non dubium bc cum costa excedere diametrum circumscripti
            capacissimae polygoniae, scilicet infinitorum angulorum, quae
            convertitur cum diametro circuli isoperimetri. Ideo si addideris
            quotquot volueris costas, semper excedunt tot lineas ba, et hoc in quantitate, qua bc excedit ba, ut est
            notum. Quod si receperis aliam polygoniam citra capacissimam, tunc
            excessus ille est minor, et ita in infinitum, et cum inter
            capacissimam et incapacissimam cadere possint infinitae
            polygoniae, erit in trigono ille excessus, si erit saltem ita
            parvus, quod non potest esse minor. Si enim posset esse minor, non
            esset polygonia incapacissima. Quantitas autem, quae non potest
            esse minor, non est quantitas, sed punctus. Sic linea bc non est aliqua quantitate maior quam illa,
            quae quaeritur.

            [image: link to parallel text] 15. Aliter: Esto quod bn
            sit linea, quae cum costa sua aequetur diametro circumscripti
            capacissimae polygoniae. Manifestum est, quod bn excedit ba,
            semidiametrum circuli isoperimetri, plus quam diameter
            circumscripti diametrum circuli scilicet in tantum, quantum bn excedit ba, ut est
            notum; et in aliis polygoniis minus capacibus continue minus. In
            minime igitur capaci minime debet linea illa costam suam excedere
            ba ultra excessum, quam diameter
            circumscripti excedit diametrum circuli isoperimetri. Sicut igitur
            in maxime capaci excessus ille est maximus, qui non potest esse
            maior, et continue minor in minus capacibus, erit in minime capaci
            minimus, qua non potest esse minor. Quare erit costa illius ut ba. Si enim foret minor quam ba, manifestum est, quod plus excederet ba quam in incapacissima fieri debet; si maior
            ba, tunc minus; erit igitur bc, cuius costa ba.

          
        
  Caesari meo piissimo domino Friderico Imperatori
              Nicolaus, Cardinalis Sancti Petri, episcopus Brixinensis,
              De caesarea circuli quadratura

              
          
          [image: link to parallel text] 2. Compulit me pridie quaedam inopinata persecutio
          munitionem Andracii, quae Almanice Buchenstein appellatur,
          inhabitare. Ibi inter Alpes libris carens recreationis gratia
          inquirere coepi, si ne claro et facili modo semper quaesita et, ut
          fertur, nondum scita circuli quadratura posset reperiri. Et is
          subscriptus modus post plures alios in aliis meis de hac re
          conscriptis libellis clarior et mihi gratior in mentem venit, quem
          tuae maiestati tamquam donum tuae celsitudini dignum transmitto. Hoc
          enim, quod hactenus aestimatum est posse inveniri, licet non nisi
          altissimo ingenio et tanto fervore, tamquam singularissimum aliquid
          quaesitum, cui dignius offertur quam supremo imperatori, qui et in
          secretis ingeniis uti nobilissimus princeps delectatur?

          [image: link to parallel text] 3. Scio hoc, licet parvum sit, munusculum pro tua
          innata clementia magni facies et mihi utique, tuo fideli, gratiosior
          eris. Capies etiam exemplo reductionis figurarum, quomodo imperatori
          adiacet potestas rotundum in angulare et item angulare in rotundum
          vertere, aliquando legis severitatem in clementiam, aliquando
          clementiam in rigorem mutare. Quod solum tibi, qui es solutus
          legibus, competit, cum tu solum civilibus praesis legibus, quibus
          ceteri iure subesse deberent.

          
            Propositio

            [image: link to parallel text] 4. Si de a, centro dati
            circuli, ad duo puncta circumferentiae, g
            et f, per duodecimam circumferentiae partem
            distantia lineas traxeris et de uno puncto ag lineae, puta d,
            orthogonalem in infinitum per af sic
            duxeris, quod portio, quam abscindit a c
            contactu ad circumferentiam, sit medietas ad, signaverisque punctum x in orthogonali, ita quod linea de a centro ad ipsum ducta sit ad lineam ad dupla, erit dx ut
            sexta pars circumferentiae dati circuli (cfr. figura 1).

            [image: ]
Fig. 1
Ratio huius est, quia ad erit
            semidiameter circuli inscripti trigono isoperimetro dato circulo
            et ax semidiameter circuli circumscripti
            dicto trigono et dx medietas lateris dicti
            trigoni.

          
          
            Probatio

            [image: link to parallel text] 5. Probatur: Cum sit certum, quod ga sit maior 2/3 semilateris trigoni et minor
            semilatere, signetur igitur stante figura tam in ga quam in fa ad
            imaginationem linea aequalis 2/3, quae sit go et fp. Deinde de
            aliquo puncto ag ducatur orthogonalis ad
            af, quae se habeat ad duas lineas, quae
            sunt supra ipsam in ga et fa, sicut se habent illae duae ad go et fp. Hoc quidem est
            possibile, quia datur prope g, ubi se habet
            ad plus, et prope o, ubi se habet ad minus;
            igitur in aliquo loco medio se habebit nec in plus nec in minus.
            Sic etiam potest dari orthogonalis, quae habeat se ad lineas, quae
            sunt sub ea usque ad o et p in habitudine, qua illae se habent ad og et pf, arguendo ut
            praemittitur.

            [image: link to parallel text] 6. Dico illas duas orthogonales coincidere in
            una, quae abscindit de og sursum et fp deorsum aequales partes, et per consequens
            etiam de go deorsum et pf sursum aequales partes; aliter enim hoc non
            est possibile, ut infra ostendetur. Erit igitur illa orthogonalis
            1/3 semilateris, uti ponitur esse dc. Et
            quia ca est dupla ad dc, erit ca ut fp, et pa erit ut fc et fc ut do. Et cum fc sit etiam
            ut oa, erit fc
            medietas da; et quia dc est 1/3 semilateris trigoni isoperimetri et
            triplicata semilatus contingens circulum inscriptum trigono in d, erit ad semidiameter illius circuli
            inscripti. Quod erat intentum.

            [image: link to parallel text] 7. Quod autem orthogonalis de g descendens et alia de o ascendens coincidant in puncto d, ut praemittitur, sic patet: Nam orthogonalis
            descendens usque ad dictam habitudinem supra d stare nequit. Patet, quia lineae supra
            orthogonalem ibi sunt minores medietate go
            et fp, et orthogonalis maior medietate go, ut est certum. Nec potest infra d descendere, quia ibi duae lineae supra
            orthogonalem sunt maiores medietate go et
            fp, et orthogonalis minor medietate go. Si igitur descendens orthogonalis non
            potest cadere nisi in d, igitur etiam et
            ascendens non potest cadere nisi in d. Cum
            in d superiores et inferiores lineae
            aequentur, igitur coincidunt orthogonales. Quod fuit
            ostendendum.

            [image: link to parallel text] 8. Aliter idem probatur. Et primum suppono posse
            signari in ag semidiametrum circuli
            inscripti trigono isoperimetro dato circulo, qui sit ad
            imaginationem ad. Et licet sit maior
            medietate ag, est tamen multo minor duabus
            tertiis, ut notum est ex ostensione dudum scita, quae habet
            diametrum circuli triplicatam cum septima excedere
            circumferentiam. Potest etiam ab puncto d orthogonalis duci indefinitae quantitatis,
            quae sit dx, et af
            de ag linea super a,
            centro dati circuli, circumvolvi, quousque portio eius supra dx et infra circumferentiam sit medietas ad. Patet. Nam si af est
            prope g, portio illa est maior medietate
            da; sed si pervenit prope locum, ubi dx scindit circumferentiam, est minor, igitur
            in aliquo loco nec maior nec minor. Ubi autem portio illa aequatur
            medietati ad, residuum lineae af infra dx versus a erit ut gd cum
            medietate da. Et haec omnia relinquo
            manifesta.

            [image: link to parallel text] 9. Secundo suppono, quod si orthogonalis de d, puta dx, fuerit ut
            sexta circumferentiae dati circuli, tunc ax
            linea erit dupla ad ad. Et tres lineae
            singulariter notantur: prima est dg, alia
            est portio af super dx et est secunda, et est linea inter d et af tertia, et hoc
            certum.

            [image: link to parallel text] 10. Tertio suppono, quod si af iacet super duodecimam partem
            circumferentiae distantis a g puncto, tunc
            linea orthogonalis dx, quae cadit inter d et lineam fa, quae
            ponatur esse dc, erit tertia pars lineae
            dx aequalis sextae parti circumferentiae
            circuli. Nam illa tertia erit medietas semidiametri circuli
            illius, cuius semidiametri potentia est tertia pars potentiae
            semidiametri ax, igitur trigoni inscripti
            eidem semilateris duae tertiae. Patet, nam potentia semilateris
            trigoni ad potentiam semidiametri se habet ut 3 ad 4. Igitur
            potentia duarum tertiarum semilateris ad potentiam totius
            semilateris se habet ut 4 ad 9, et potentia semidiametri erit ut
            12, cuius tertia est 4, et hoc certum.

            [image: link to parallel text] 11. Quarto suppono, quod dum af circumvolvitur, veniet ad locum, ubi tres
            lineae, de quibus in secunda suppositione, erunt aequales dx. Nam si locetur af
            prope g, erunt minores; si distanter et
            ultra duodecimam circumferentiae a g
            puncto, erunt maiores. Erunt igitur in aliquo loco nec maiores nec
            minores dx, quae ponitur esse sexta
            circumferentiae.

            [image: link to parallel text] 12. Quinto suppono, quod dum circumvolvitur af, quamdiu secunda est maior medietate ad, tunc prima et secunda simul sunt maiores
            linea residui. Et voco lineam residui illam partem de af, a qua est secunda subtracta. Et quando
            secunda est minor medietate ad, tunc prima
            et secunda simul sunt minores linea residui. Quanto autem af locatur distantius a g puncto, tanto tres lineae simul sunt maiores;
            et ita quanto secunda est maior, tres lineae simul sunt minores;
            et quanto minor, maiores.

            [image: link to parallel text] 13. Dico igitur, quod cum af locatur super punctum duodecimae partis
            circumferentiae distantis a g puncto, tunc
            tres lineae simul aequantur dx, scilicet
            sextae parti circumferentiae, quia secunda est medietas ad et prima et secunda aequantur lineae
            residui, quae cum tertia aequatur dx.

            
            [image: link to parallel text] 14. Si quis negat hoc, oportet quod ideo, quia
            non fatetur secundam medietatem ad. Ideo si
            negans dicit tres lineas minores dx,
            necesse est, quod dicat secundam esse talem, quod tres lineae sint
            minores quam si secunda esset medietas ad.
            Et ergo ex quinta suppositione oportet, quod dicat secundam esse
            maiorem medietate ad; et si sic, tunc, cum
            ex eadem suppositione prima et secunda simul excedant lineam
            residui ca, quae cum tertia cd aequatur dx, patet
            tres lineas non esse minores, sed maiores dx. Sic si dixerit tres lineas maiores,
            necessario dicet secundam minorem medietate ad. Et si sic, prima et secunda erunt minores
            linea residui, quae cum tertia aequatur dx.
            Tres igitur lineae erunt minores; et quidquid negans dicit, ex
            quinta suppositione infertur oppositum. Et ita patet necessario
            propositionem veram et ad semidiametrum
            circuli inscripti trigono isoperimetro et cf eius medietatem atque dx rectam aequalem sextae parti circumferentiae
            dati circuli, cuius ag semidiameter, et hoc
            est intentum.

            
            [image: link to parallel text] 15. Adhuc aliter. Dico tres lineas aequari
            medietati lateris trigoni isoperimetri, et consequenter primam et
            secundam simul aequari duabus tertiis illius et secundam esse
            medietatem semidiametri circuli inscripti trigono.

            [image: link to parallel text] 16. Si unum est verum, omnia sunt vera, ut est
            certum. Si negas, tunc tibi contradicis. Nam si servata figura
            priori dicis tres lineas esse minores medietate lateris dicti
            trigoni, tu dicis secundam esse maiorem et minorem medietate
            semidiametri circuli inscripti dicto trigono. Maiorem dicis in eo,
            quod asseris tres lineas simul esse minores, quam si secunda esset
            medietas semidiametri circuli inscripti trigono. Quanto enim
            secunda maior, tanto tres lineae simul minores ex quinta
            suppositione. Tu dicis etiam secundam minorem medietate dicti
            semidiametri, quia asseris primam et secundam simul minores
            residuo af, a quo secunda est abscisa.
            Alias enim tres lineae non essent minores medietate lateris
            trigoni. Etiam dicis tertiam esse maiorem et minorem 1/3
            semilateris trigoni. Nam si tres lineae simul sunt minores
            medietate lateris trigoni et prima cum secunda sunt maiores
            residuo af, igitur tertia est minor 1/3
            semilateris. Et cum prima et secunda etiam sint minores residuo
            af, igitur tertia maior 1/3 semilateris. Et
            hoc idem eveniet, quando dicis tres lineas maiores semilateri. Sic
            patet, quomodo negans dicit duo contradictoria.

            [image: link to parallel text] 17. Palam diametrum dati circuli valere
            semidiametrum circuli inscripti trigono isoperimetro et 2/3
            lateris trigoni isoperimetri. Ideo si fuerit linea aequalis
            diametro triplicatae cum 1/7 eius et sumpseris ex illa
            semidiametrum inscripti et 2/3 lateris trigoni, erunt simul
            maiores diametro, quia linea aequalis diametro triplicatae et eius
            septimae parti est maior quam circumferentia. Et si fuerit linea
            aequalis diametro triplicatae et 10/71 eius et ex illa sumpseris
            semidiametrum circuli inscripti trigono dicto et duas tertias
            lateris trigoni, erunt illa simul minores diametro, quia diameter
            triplicata cum 10/71 eius est minus quam circumferentia, uti haec
            Archimedes et alii ostenderunt. Et poteris in numeris
            experiri.

            
            [image: link to parallel text] 18. Est etiam notandum, quod qui negat circuli
            quadraturam ex eo, ne affirmet curvum et rectum coincidere, ille
            negando affirmat duo contradictoria coincidere. Subtiliter
            advertens ostendet propositiones mathematicas veras ex eo, quia
            alias sequeretur circuli quadratura, et similiter ex eo, quia
            alias sequeretur circulum non posse quadrari. Unde ex affirmatione
            et negatione quadraturae circuli possunt omnes propositiones
            mathematicae vere ostendi, uti aliqualiter alibi de hoc tetigi,
            sicut docta ignorantia omnia scibilia venatur in fine
            indagationis, ne sit coincidentia et pariter ne non sit
            coincidentia contradictoriorum, de qua alibi, licet
            insufficientissime, aliqua in tribus scripsi libellis.

            [image: link to parallel text] 19. Certum autem est, si ducitur ga semidiameter dati circuli in ab triplam ad dx, oriri
            quadrangulum aequale circulo (cfr. figura 2). Et si capitur
            medium proportionale inter ag et ab triplam ad dx per
            nonam sexti Euclidis, ut est ae, erit ae latus quadrati, quod aequatur circulo, ut
            haec prius scita sunt. Quibus hanc caesaream addo circuli
            quadraturam.

            [image: ]
Fig. 2
Finit anno Christi 1457 sexto Augusti in Andracio.

          
        
  De mathematica perfectione

          Reverendissimo in Christo Patri, domino
          Antonio[image: link to parallel text]  sanctae Romanae ecclesiae tituli sancti Chrysogoni
          presbytero cardinali, Nicolaus cardinalis tituli sancti Petri ad
          vincula de mathematica perfectione

          1. Sollicita est nobilis mens vestra, P.
          reverendissime, ut videat etiam hebetiorum speculationes, et a me
          alias novi aliquid deposcebat. Et quoniam me a palatio pes morbidus
          excusavit, biduo domi sedens mathematicam perfectionem, quam mitto,
          conscripsi, quatenus virtutem coincidentiarum experimento ignotorum
          hactenus in theologicis inquisitionibus commendarem. Omne enim
          scibile mathematicum ex ipsa, uti exempla quaedam subiungo,
          attingitur in his obscuris semper quam avide quaesitis, quae nulli
          hactenus patuerunt. Quomodo autem mathematica nos ducant ad penitus
          absoluta divina et aeterna, melius me novit doctissima paternitas
          vestra, qui estis theologorum vertex. Quandam etiam meae
          considerationis circa speculum et aenigma parvam alligavi
          scripturam: ubi si R. P. V. modicum versari dignabitur, subito
          videbit, si visum mentis recte in rerum conieci principium, haec
          talia, quae etiam a doctissimis scribi timebantur. Quoniam minus
          apte panduntur quam contemplentur, non erubui P. V. mittere, cuius
          iudicio dirigi opto, sciens me non alieno, sed patri, qui me amat,
          communicare secreta, quae mihi pretiosiora fortassis videntur quam
          existant: correcturus aestimationem secundum vestram sententiam,
          quam istis libellis supplex ascribi deposco.

          [image: link to parallel text] 2. Intentio est ex oppositorum coincidentia
          mathematicam venari perfectionem. Et quia perfectio illa plerumque
          consistit in rectae curvaeque quantitatis adaequatione, propono
          habitudinem duarum rectarum linearum se ut chorda ad suum arcum
          habentium investigare, sciens illa habita me medium habere curvam
          quantitatem cum recta adaequandi; et quoniam ad has inveniendas
          necesse est me alicuius chordae ad arcum habitudinem scire, ut ex
          illa cognita pergere queam ad artem. Sed quomodo est possibile me
          cuiusquam datae chordae ad arcum habitudinem scire, cum inter illas
          quantitates adeo contrarias forte non cadat numerabilis
          habitudo?

          
          [image: link to parallel text] 3. Necesse erit igitur me recurrere ad visum
          intellectualem, qui videt minimam, sed non assignabilem chordam cum
          minimo arcu coincidere. Nam quanto chorda minor, tanto sagitta adhuc
          minor, ut de sagitta chordae bc est minor quam ge
          sagitta chordae fh, quia bc minor fh, et ita
          consequenter (cfr. figura 1).

          [image: ]
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[image: link to parallel text] 4. Minima igitur chorda, qua minor dari non posset,
          si signabilis foret, non haberet sagittam, et ita etiam non foret
          minor arcu suo. Coincideret igitur ibi chorda et arcus, si ad
          minimam quantitatem in talibus deveniretur. Hoc videt bene
          intellectus necessarium, licet sciat nec arcum nec chordam, cum sint
          quantitates, esse simpliciter minimas in actu et posse, cum
          continuum sit semper divisibile. Ad hauriendum autem scientiam
          habitudinis respicio ad intellectualem visionem et dico me videre,
          ubi est chordae et arcus aequalitas, scilicet in simpliciter minimo
          utriusque. Ex hac visa aequalitate pergo ad inquirendum intentum
          medio trianguli orthogonii, et hoc per propositionem, quae
          sequitur.

          
            Propositio

            
            [image: link to parallel text] 5. Si orthogonii latus, quo non est maius,
            ponitur linea prima et semidiameter circuli, et latus, quo non est
            minus, secunda linea et semichorda, et reliquum latus tertia
            linea: quae erit semiarcus ad semichordam habitudo, illa erit
            lineae aequalis tribus primis lineis ad lineam aequalem duabus
            primis cum tertia.

            Ut si orthogonius est abc et ac latus, quo non est maius, prima linea et
            semidiameter circuli, et bc latus, quo non
            est minus, secunda linea et semichorda, et ab latus tertia linea, et hc semiarcus, et de aequalis tribus lineis ac, et fg aequalis
            duabus ac cum una ab. Dico, quod quae est habitudo hc ad bc illa est de ad fg
            (cfr. figura 2).

            [image: ]
Fig. 2

          
            Explanatio propositionis

            [image: link to parallel text] 6. Orthogonius est tanto minor, quanto prima
            linea tertiam minus excedit. Si igitur posset dari minimus
            orthogonius, prima tertiam non excederet, et quia secunda linea
            foret minima, tunc cum ponatur semichorda, ipsa non foret minor
            semiarcu secundum praemissa.

            Maximus autem orthogonius est, quando prima tertiam excedit
            maxime. Et hoc erit, quando tertia erit ut secunda, qua non est
            minor, et tunc secunda est semichorda quadrantis. Et sit ille
            orthogonius abc (cfr. figura 3).

            [image: ]
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Dico possibile esse, quod aliqua linea addatur ac et eadem addatur ab,
            et maior se habeat ad minorem ut hc
            semiarcus ad bc semichordam. Hanc lineam
            posse dari, quae addatur ac et ab, ut praefertur, certum relinquo, cum possit
            linea aliqua dari, quae addita ad ac et ab efficiat lineas maioris habitudinis quam est
            habitudo hc semiarcus ad bc, et possit dari linea, quae addita efficiat
            lineas minoris habitudinis quam hc ad bc, et hoc certum. Igitur et dari posse eam,
            quae addita efficiat lineas nec maioris nec minoris habitudinis
            quam hc ad bc,
            manifestum, cum non repugnet lineas rectas se habere ut chorda ad
            arcum, sive chorda sit arcui commensurabilis sive
            incommensurabilis.

            [image: link to parallel text] 7. Constat autem, quod qualiscumque illa linea
            fuerit, si in minimo orthogonio etiam ad ac
            et ab additur, propositio verificatur, cum
            ibi prima et tertia sic sint eadem sicut semiarcus et semichorda.
            Quare qualiscumque illa linea fuerit, quae additur, propositio
            vera manet. Et quia sic est, quod linea, quae additur in maximo
            orthogonio, est etiam illa, quae additur in minimo, igitur et in
            omnibus orthogoniis intermediis eadem manebit.

            Et haec est radix huius scientiae, ex qua sequitur, quod si
            reperio lineam, quam addo in orthogonio, cuius bc est semichorda quadrantis, et quam etiam
            addo, ubi bc est semichorda hexagoni, et
            quae hinc inde reperio, tenent habitudinem ad invicem sicut arcus
            scilicet ut tria ad duo. Patet me lineam addendam in omnibus
            invenisse, et hoc est indubitatum.

            [image: link to parallel text] 8. Hoc faciliter sic patet. Possibile est lineam
            aequalem tertiae adiunctis duabus primis orthogonii ad lineam ex
            prima adiunctis quattuor se|cundis in aliquo loco se habere ut
            semichorda ad semiarcum. Hoc certum. Nam datur, ubi in minus, ut
            in maioribus orthogoniis, et ubi in plus, ut in minoribus, ut de
            se patet: datur igitur in aliquo loco, ubi nec in plus nec in
            minus. Ubicumque hoc fuerit, oportet per praemissa, quod sit eadem
            linea, quae additur ad tertiam et quae additur ad primam. Sed quae
            additur ad tertiam, est prima bis. Igitur quae additur ad primam,
            erit similiter ut prima bis, et ita erit, ubi secunda erit
            medietas primae, scilicet semichorda arcus hexagoni. Quare addenda
            est diameter.

            [image: link to parallel text] 9. Sic poteris et aliter idipsum videre. Puta
            datur, ubi prima bis cum secunda bis se habet ad primam ter sicut
            semichorda ad semiarcum, arguendo ut ante: Sed cum una debet esse
            linea addita ad tertiam et primam, et ad primam additur prima bis,
            et prima bis additur ad secundam bis, erit secunda bis ut tertia,
            et quae additur, erit diameter. Et consimilia facere poteris
            argumenta, quot placuerint.

            Sed propositio dicit lineam addendam ad ac et ab esse diametrum
            sive duplam ad ac, quod idem est. Poteris
            hoc experiri ex iam dicto, scilicet an in omnibus
            proportionabiliter idem eveniat.

            
            [image: link to parallel text] 10. Sed ut tu videas utique sic esse, ut habet
            propositio, sumas duplicem orthogonium, ut est abc et abd, et describe
            arcum dc continuando etiam ab ad arcum, et sit be
            sagitta (cfr. figura 4). Dico possibile esse aliquem triangulum ex
            orthogoniis compositum sic se habere, quod si ac et ad continuantur in
            infinitum, et chorda aliqua, quae sit aequedistans ad dc, fiat aequalis ad,
            ac et ab, ut gf: quod tunc arcus, cuius gf chorda, excedat chordam in be sagitta, scilicet in tantum, quantum ae excedit ab.

            [image: ]
Fig. 4
[image: link to parallel text] 11. Hoc quidem in aliquo loco possibile esse
            negari nequit, puta ubi tres semidiametri minus sagitta sunt
            triplae ad chordam. Tamen sive ibi sive alibi sit, non variat;
            sufficit, quod in aliquo loco est possibile.

            Et hoc si volueris ut ante probare, poteris: quia datur, ubi
            excessus est in minus quam sagitta, et datur, ubi in plus; et haec
            certa relinquo. Datur igitur, ubi nec in plus nec in minus modo
            praemisso. Ubicumque autem hoc fuerit, patet ac, ad cum ab se habere ad ac ter
            sicut chorda ad arcum. Patet, quia ac ter
            cum ac ter minus sagitta in aliquo loco
            aequentur chordae et arcui simul, et hoc certum, aut igitur ibi,
            ubi arcus excedit chordam in dicta sagitta. Et habetur propositum
            aut citra vel ultra. Si citra: tunc, cum arcus chordam minus
            excedat quam in dicta sagitta, ideo chorda erit maior quam ubi
            arcus excedit chordam in dicta sagitta, quod est impossibile,
            scilicet minorem arcum habere maiorem chordam. Sic, si diceretur
            quod ultra: oporteret maiorem arcum habere minorem chordam. Quare
            linea ad ac et ab
            addenda est ac bis seu diameter circuli, et
            haec est veritas.

            [image: link to parallel text] 12. Cur autem sit diameter eiusdem circuli, forte
            dici poterit, quod cum linea addenda sit alicuius circuli
            diameter. Non dicetur, quod sit maioris circuli diameter, quia
            tunc non haberet veritatem in maximo circulo, quo actu non est
            maior. Nec potest dici, quod sit minoris, quia in minimo circulo
            actu non haberet veritatem; et ita in nullo, cum id, quod de
            circulo ut de circulo dicitur, omnibus convenire necesse sit. Et
            si omnibus non convenit, tunc nulli: sive tamen illa sive alia sit
            ratio, non refert. Sic patet propositionis intellectus.

            [image: link to parallel text] 13. Adiciam aliam eiusdem lineae addendae
            ostensionem (cfr. figura 5). Dabilis est linea, cuius ac est pars aliquota, quae ad lineam, quam
            excedit in quantitate, qua ac excedit ab, se habet in maiori habitudine quam hc ad bc: uti est linea
            ad ac dupla. Et dabilis est linea, cuius
            ac est pars aliquota, quae ad lineam, quam
            excedit in quantitate, qua ac excedit ab, habet minorem habitudinem quam hc ad bc: uti est
            quadrupla ad ac. Et haec verissima. Quare
            dabilis est linea, cuius ac est pars
            aliquota, quae ad lineam, quam excedit in quantitate, qua ac excedit ab, se habet
            in habitudine qua hc ad bc. Et haec, cum sit necessario maior dupla et
            minor quadrupla, erit tripla ad ac. Quare
            addenda ad ac erit dupla ad ipsam seu
            diameter.

            [image: ]
Fig. 5
[image: link to parallel text] 14. Ut autem in numeris tu videas illa vera, quae
            de dupla et quadrupla ad ac dixi, ponas
            secundum propinquitatem Archimedis ac esse 7 et ab quasi 5, et sit bc,
            ut in quadrante, ei aequalis etiam 5. Et hc
            erit 5 cum dimidio secundum propinquitatem positionis, quod
            semicirculus sit ac ter cum una septima,
            scilicet quasi 22, et ita habitudo hc ad
            bc erit quasi 5 cum dimidio ad 5 sive 11 ad
            10, et excessus ac super ab quasi duo. Et patet, quod dupla ad ac, scilicet 14, se habet ad minorem ea in
            quantitate excessus, qua ac excedit ab, scilicet qui est quasi duo, puta 12, in
            maiori habitudine quam 11 ad 10, et quater ac, scilicet 28, ad
            minorem ei in duobus, scilicet 26, in minori habitudine quam 11 ad
            10. Ideo linea, cuius ac debet esse
            aliquota, debet esse maior dupla et minor quadrupla. Erit igitur
            tripla, cum illa sola sit media, cuius ac
            est aliquota.

            [image: link to parallel text] 15. Causa autem, cur procedit argumentatio, quod
            linea, quae quaeritur, debet esse pars aliquota ac, est ista: Quia cum debeat esse una in
            omnibus orthogoniis, tunc necesse est, quod respiciat ac, quae etiam est una in omnibus, et non ab vel bc, quae semper
            variantur. Possent alii innumerabiles modi ostensionis
            propositionis adduci, sed isti sunt fundamentales et
            sufficientes.

            [image: link to parallel text] 16. Multa hic propalantur abscondita, quoniam
            vides, quomodo id, quod verificatur de maximo et minimo,
            verificatur de mediis, et quod ille, qui videt maximum coincidere
            cum minimo, quoniam maximum pariter et minimum, ille in ipso videt
            omnia. Et praxim habes venandi scientiam commensurationis
            contrariorum, quae incommensurabilia videntur. Haec mihi magna et
            prius intacta videntur. Archimedes etenim, qui per helicam voluit rectam circumferentiae
            circuli commensurare, nihil de arte tetigit nec id invenit in
            dicto particulari, quod quaesivit; peccavit enim praesupponens,
            quod quaesivit. Helica enim sive spiralis linea sine motu duorum
            punctorum, quorum motuum habitudo est ut semidiameter ad
            circumferentiam circuli, describi nequit. Id igitur praesupposuit,
            dum de helica loqueretur, quod quaesivit. Sed haec sic sint.
            Redeamus ad institutum et ex fecunditate propositionis aliqua
            eliciamus corollaria, ut pari modo innumera alia his datis queant
            explicare.

          
          
            Corollarium

            [image: link to parallel text] 17. Illa est habitudo trium semidiametrorum ad
            tres semidiametros minus sagitta chordae quadrantis et minoris,
            quae est cuiuslibet arcus ad suam chordam (cfr. figura 6).

            [image: ]
Fig. 6
Ut si bc sit chorda quadrantis vel
            minoris arcus, et de a centro per d medium bc ad e circumferentiam sector ducatur. Illa est
            habitudo ae ter sumpta ad ae bis sumpta cum ad,
            quae arcus ad bc chordam. Cum autem dicitur
            de chorda quadrantis et minoris, patet
            ideo, quod in maiori chorda latus orthogonii, quo non est minus,
            non possit esse semichorda, quod tamen requiritur. Et clare patet
            corollarium ex praemissis.

          
          
            Corollarium

            [image: link to parallel text] 18. Datum arcum in rectam resolvere.

            [image: ]
Fig. 7
Arcus enim, si est quadrans et minor, ipsum sic recipito; si
            maior, partem eius recipito aliquotam, quae sit quadrans aut
            minor. Et sit bc arcus quadrantis in rectam
            resolvendus (cfr. figura 7). Trahe de a centro lineas
            per b et c in
            infinitum et aliam ad medium chordae, scilicet ad, et inter infinitas lineas unam
            aequedistantem ad bc chordam describe, quae
            sit aequalis ab, ad
            et ac, et sit ef
            aequalis illis. In ef signa ab, et sit fg ut ab, et trahe ag lineam
            notando, ubi chordam bc secat, ponendo h litteram. Dico hc esse
            tertiam arcus. Tripla igitur hc, et
            redegisti arcum in rectam. Vel trahe aequedistantem ad bc versus centrum, quae sit ikl, ita quod ai, ak et al simul aequentur
            bc chordae, et ai
            erit tertia arcus. Haec omnia de se patent.

            [image: ]
Fig. 8

          
            Corollarium

            [image: link to parallel text] 19. Datam rectam in arcum resolvere.

            Sit ab recta, quam si vis in quadrantem
            alicuius circuli resolvere, fac de o centro
            lineas, quae rectum angulum constituunt, exire indefinitae
            quantitatis, quae sint od et oe, et aliam fac transire e medio anguli, scilicet of, et tertiam partem ab
            lineae resolvendae signa in od et oe, et sit og ut tertia
            ab, similiter et oh,
            trahendo gih (cfr. figura 8). Et consequenter
            trahe aequedistantem ad gih aequalem og, oi et oh, et sit kl illis
            aequalis, et describe quadrantem, cuius kl
            chorda, quia ille est, cui ab aequatur. Et
            si in alium arcum resolvere volueris, qui fuerit minor quadrante,
            eodem modo facito; si maior, recipito partem aliquotam. Puta vis
            in circulum reducere, recipito quartam partem rectae et resolve in
            quadrantem, et totum in circulum reduxisti.

            [image: link to parallel text] 20. Si vero datam rectam in arcum dati circuli
            resolvere volueris, vel cum tota vel parte aliquota eius, procede
            modo quo supra, angulum od et oe variando, quousque attingas chordam, quae
            og, oi et oh aequetur.

          
          
            Corollarium

            [image: link to parallel text] 21. Datum arcum unius circuli in arcum alterius
            circuli resolvere.

            Hoc fit resolvendo ipsum primo in rectam, deinde rectam in
            arcum alterius modo praemisso.

          
          
            Corollarium

            [image: link to parallel text] 22. Angulos, qui se habent ut datae lineae,
            assignare.

            Hoc fit in resolvendo lineas in arcus eiusdem circuli et a
            centro sectores ad fines talium arcuum trahendo.

          
          
            Corollarium

            [image: link to parallel text] 23. Quae est habitudo semidiametri ad
            semidiametrum minus sagitta, illa est tertiae arcus ad excessum,
            quo chorda duas tertias arcus sui excedit (cfr. figura 9). Puta sit bc chorda quadrantis, et in illa per praemissa
            signasti duas tertias arcus, scilicet cd et
            de. Dico quod habitudo de tertiae arcus ad eb
            excessum, quo chorda duas tertias excedit, est sicut semidiameter
            ad semidiametrum minus sagitta. Patet corollarium ex praemissis.
            Et habet veritatem in maximo et minimo orthogonio et in omnibus
            mediis.

            [image: ]
Fig. 9

          
            Corollarium

            [image: link to parallel text] 24. Chordam dati arcus partis aliquotae
            semicirculi assignare.

            Puta tu vis ex scientia chordae quadrantis scire chordam arcus,
            qui est medietatis quadrantis. Tu nosti partem chordae quadrantis,
            quae aequatur tertiae arcus, et recipis medietatem illius et addis
            ei similem, et quaeris excessum, qui se habeat ad unam tertiam
            sicut semidiameter minus sagitta ad semidiametrum.

            [image: link to parallel text] 25. Subiciam adhuc curiosa corollaria.

            Si tres semidiametri minus sagitta erunt triplae ad chordam,
            erit arcus ut semidiameter.

            Si erunt duplae ad chordam, arcus se habebit in proportione
            sesquialtera ad semidiametrum.

            Tres semidiametri sunt medium proportionale inter tres
            semidiametros minus sagitta et semicirculum.

            Si tres semidiametri minus sagitta fuerint multiplices ad
            chordam, sic erunt et tres semidiametri minus sagitta ad chordam
            medietatis arcus et cuiuslibet partis aliquotae
            proportionabiliter.

            Tria latera trigoni aequilateri erunt ut circumferentia circuli
            illius, cuius diameter est tertia pars duorum laterum et lineae
            rectae de uno latere ad medium lateris sibi oppositi.

            [image: link to parallel text] 26. Si a centro tres lineae ducantur, una per
            principium chordae quadrantis aut minoris arcus, alia per medium,
            tertia per finem, quae in linea aequedistanti chordae terminentur,
            ita quod illarum trium linearum habitudo ad chordam sit ut
            circumferentiae ad arcum, tunc linea ducta per principium chordae
            triplicata est aequalis circumferentiae.

            Arcus aequalis tribus quartis diametri excedit chordam suam in
            medietate sagittae.

            Diameter circuli est aequalis duabus tertiis laterum trigoni
            isoperimetri et semidiametro circuli eidem trigono inscripti.

            Excessus semicirculi super duas chordas quadrantis est ut
            excessus diametri quadrati aequalis tertiae parti eius super suam
            costam.

            Habitudo trium diametrorum circuli ad suam circumferentiam est
            ut 14 cum radice de 36 et 3/4 ad 21.

            Scientia chordarum nunc exstat perfecte adinventa.

            Scientia quadraturae circuli suum finem sortita existit.
            Secundum datarum linearum habitudinem sive commensurabilium sive
            incommensurabilium lineas et superficies rectas et curvas atque
            corpora dari docet haec ars perfectissima.

            Adhuc ex coincidentia minimae contingentiae et minimi arcus
            propositionem recipio, quae est talis:

          
          
            Propositio

            [image: ]
Fig. 10
[image: link to parallel text] 27. Si ponitur secundum latus orthogonii
            semidiameter circuli et tertium linea contingens circulum vel e
            converso, et descriptus fuerit circulus, quae erit habitudo
            contingentis ad arcum, qui cadit intra orthogonium, illa et rectae
            atque curvae superficierum (cfr. figura 10).

            Ut si orthogonius fuerit abc et bc contingens et ab
            semidiameter circulo descripto, cuius bd
            portio cadit intra orthogonium, quae est bc
            ad bd, illa abc
            rectae superficiei ad abd curvam
            superficiem.

            Probatio huius est: Quia cum sic sit in minimo, si dari posset,
            igitur et in omnibus, cum non referat, utrum orthogonius sit
            maximus vel non.

            [image: link to parallel text] 28. Datam superficiem ex arcu et sectoribus
            constitutam in orthogonium resolvere.

            Ut sit abc, resolvatur bd arcus in rectam, quae sit bc, et claudatur orthogonius per ac. Et ita habes, sive bc sit ad circumferentiam proportionabilis sive
            non, quomodo in rectam superficiem redigatur. Et habes, quomodo
            circulum in orthogonium resolvis et demum in quadratum seu aliam
            figuram.

            [image: link to parallel text] 29. Datam superficiem rectam in portionem
            circularem resolvere.

            Ex praemissis patet, quod si est orthogonius, quomodo hoc fiat;
            si non est, redigatur in orthogonium.

            Abscisiones ex chorda et arcu in rectas aut circulares
            resolvere, de se patet.

            [image: link to parallel text] 30. Abscisionum sphaerae habitudo curvae
            superficiei ad rectam basis est ut linea de cenit ad centrum basis
            cum semidiametro basis ad ipsam semidiametrum.

            Patet, quia in minima abscisione, ubi recta superficies
            coincidit cum curva et cenit cum centro, ita est; ideo in
            omnibus.

            Curva superficies medietatis sphaerae est dupla ad rectam
            circuli basis.

            Datam curvam sphaerae superficiem in rectam resolvere,
            circularem et rectilinealem.

            Sphaeram in cubum et cubum in sphaeram resolvere.

            Simili modo in aliis curvis superficiebus ad minima respiciendo
            habitudines elice. Et quidquid scibile est humanitus in
            mathematicis, mea sententia hac via reperietur.

            Deo laus.

          
        
  R. D. N. Cardinalis S. Petri in mathematicis
              aurea propositio

              
          [image: link to parallel text] 1. Sive tres lineae a centro egressae angulos
          aequales semirectos aut minores constituentes per arcum seu chordam
          terminentur, eandem ad terminantem tenent habitudinem
          (cfr. figura 1).

          [image: ]
Fig. 1
Uti si de a, centro bdc, indefinitae quantitatis lineae egrediantur,
          duos aequales circa a angulos semirectos seu
          minores constituentes, per alicuius circuli arcum, puta bdc, aut eius chordam, scilicet bhc, sive contingentem, puta edg, terminentur: eandem teneant tres lineae ab, ad et ac ad arcum terminantem habitudinem quam ab, ah et ac ad bhc terminantem,
          sive ae, ad et ag ad edg terminantem.
          Quod idemestac si diceretur: Sicut bdc arcus
          est quadrans et tres lineae ab, ad et ac sunt tres semidiametri eius, sic edg est aequalis alicui quadranti et ae, ad et ag aequantur
          tribus semidiametris circuli eius.

          [image: link to parallel text] 2. Ratio huius, quoniam si arcus bdc deberet in rectam, cuius extrema aequedistant
          ab a centro, inter lineas de a per b et de a per c egredientes
          cadentem extendi, necesse foret extrema cum medio simul tam rectae
          quam arcus aequedistare ab a centro. Si enim
          extrema aequedistarent, tunc medium rectae minus distaret quam
          medium arcus ab a centro, et recta foret
          minor arcu, ut in chorda bhc. Et si media
          aequedistarent, tunc extrema rectae plus distarent ut in contingente
          edg, ideo ipsa maior arcu bdc. Oportet igitur, quod quantum medium arcus,
          dum extenditur, descendit ad centrum, quod tantum extrema ascendant
          a centro, ut in ikl, ubi medium arcus in
          extensione de d descendit in k, et b et c extrema ascendunt in i
          et l; et extremorum ascensus aequatur
          descensui medii, ita quod extrema cum medio rectae simul
          aequedistant ab a centro, sicut extrema simul
          cum medio bdc arcus. Unde si non foret
          aequedistantia talis, recta non aequaretur illi arcui, sed simili
          maioris circuli, si maior distantia a centro, vel minori, si
          minor.

          [image: link to parallel text] 3. Et quia, quanto circulus maior est, tanto arcus
          rectae similior, ideo videt mens, si infinite maximus circulus
          signabilis foret, arcum esse et rectam et haec, quae dicta sunt ibi
          atque propositionem veram. Et quoniam stante eodem angulo circa
          centrum eadem est habitudo terminantium et terminatarum, ideo id,
          quod in maximo videt mens verum, in omnibus pariformiter verum esse
          conspicit. Propositio igitur illis et aliis innumeris modis
          verissima conspicitur.

          
          [image: link to parallel text] 4. Ratio, cur propositio de duobus semirectis, qui
          rectum angulum faciunt, et minoribus et non universaliter de omnibus
          angulis loquitur, haec est, quia a minimo arcu et portione circuli
          usque ad quadrantem triangulus ex orthogoniis compositus et portioni
          circuli inscriptus continue augetur et fit maximus in quadrante,
          post minuitur. Et ideo non potest propositio aeque vera esse arcu
          cum portione et triangulo crescente atque arcu cum portione
          crescente et triangulo decrescente.

          [image: link to parallel text] 5. Patet faciliter omnem arcum rectilineari posse.
          Nam si tres lineae in recta terminatae sunt pars aliquota trium
          semidiametrorum, recta talis erit aliquota arcus, curva tamen
          superficies est capacior recta. Sic si tertiam partem trium
          terminatarum in recta sumpseris et semidiametrum feceris describendo
          arcum, ille rectae aequabitur, et universaliter arcum in rectam et
          rectam in arcum vertes et arcum unius circuli in arcum alterius
          (cfr. figura 2).

          [image: ]
Fig. 2

          [image: link to parallel text] 6. Constat etiam, quod anguli dari possunt, qui se
          habent ut costa et diameter quadrati et universaliter sicut dabiles
          lineae, ita et superficies et corpora. Habes etiam innumerabiles
          modos circulum rectilineandi, quadrangulandi et quadrandi. Sic de
          qualibet portione circuli commensurabili circulo vel
          incommensurabili. Patescunt etiam ignota de sinibus et chordis. Haec
          omnia hactenus in mathematicis incognita et quaeque mathematice
          scibilia cum infinitis inauditis corollariis ad hoc datis quaerentes
          reperient.

          
          [image: link to parallel text] 7. Altius se elevantes vident aequalitatem
          habitudinis esse medium transmutationis atque transitus de contrario
          in contrarium, et quid mysterii habet, quod tres lineae a puncto
          egredientes aut terminantur in uno arcu, et sunt omnes aequales, aut
          in recta, et extremae sunt aequales et media inaequalis usque ad
          incommensurabilitatem, sicut costa est et diameter quadrati. Et
          diversitas terminationis diversificat superficies, ut una sit curva,
          alia recta, manente eadem habitudine terminantium, quae linearum ex
          eodem puncto et modo aequali egredientium. Nec hoc citra nec ultra
          trinitatem linearum, quae non ut separatae, sed ut una simplex
          longitudo considerantur, verum esse potest. Circa unitrinum igitur
          principium et rerum ab eo effluxum versabitur altissima sapientis
          speculatio.

          
          Finit Romae 1459 8. Augusti, tempore legationis urbis etc.

        
  Appendix ‹Magister Paulus ad Nicolaum Cusanum
              Cardinalem›

              
          [image: link to parallel text] 1. Capacitates omnium polygoniarum isoperimetrarum
          ad invicem et ad circulum isoperimetrum eandem proportionem habent
          quam primae lineae unius ad primas lineas alterius et ad
          semidiametrum isoperimetrum. Similiter excessus capacitatis aliarum
          a triangulo supra triangulum in eadem proportione se habent ad
          capacitatem trianguli, quam habent excessus primarum linearum
          aliarum figurarum a triangulo ad primam trianguli lineam.

          [image: link to parallel text] 2. Verbi gratia: Sit prima trianguli ab, prima alterius figurae mediae ut quadrati cd, prima circuli sive semidiameter ce, sit ac
          semicircumferentia omnium istarum superficierum, quoniam sunt
          isoperimetrae (cfr. figura 1).

          [image: ]
Fig. 1
Erit superficies ae capacitas circuli,
          superficies ad capacitas figurae mediae ut
          quadrati, superficies af capacitas trianguli.
          Dico primo, quod qualis est proportio superficiei ae ad ad superficiem,
          talis est ce lineae ad cd lineam, et qualis proportio est ad superficiei ad af
          superficiem, talis est cd lineae ad cf lineam, per primam enim sexti Euclidis. Dictae superficies sunt eiusdem altitudinis, ergo suis
          basibus sunt proportionales. Eodem modo probatur de excessibus
          capacitatum, quia eaedem sunt proportiones de superficiebus ge et bd ad lineas ed et df vel de
          superficiebus be et bd, qui sunt excessus capacitatum circuli et
          quadrati supra triangulum, ad lineas fe et
          fd, qui sunt excessus primarum linearum
          circuli et quadrati supra primam trianguli. Haec clara sunt ex eadem
          prima sexti Euclidis. Quicquid ergo de capacitatibus corporum dicitur et
          capacitatibus excessuum, de ipsis primis lineis dici potest et de
          eorum excessibus.

          [image: link to parallel text] 3. Si a secunda extremitate primae circuli ad
          secundam trianguli linea recta ducatur aequedistanter basi, in ea
          proportione, qua dividet excessum secundae supra primam ipsius
          trianguli, in eadem proportione dividet excessus secundarum a primis
          omnium aliarum figurarum mediarum.

          [image: link to parallel text] 4. Sit supra extremitatem lineae ac erecta linea ab, quae
          sit prima circuli, et super alia extremitate dictae lineae ac sit erecta linea cd,
          quae sit secunda trianguli. Quia linea ab est
          minor linea cd, si a puncto b trahatur linea be
          aequedistans basi ac, perveniet ad lineam cd et dividet excessum secundae a prima, qui est
          hd, in quadam proportione de ad eh. Dico quod si
          prima et secunda alicuius figurae mediae describatur, ut gi prima et gf secunda,
          quod excessus secundae a prima, qui est fi,
          dividetur ab ipsa be linea in puncto k in eadem proportione, quae erit fk ad ki ductis lineis db hb ita, quod erit eadem proportio fk ad ki, quae de ad eh. Totus enim
          triangulus dhb divisus est per aequedistantem
          basi fi. Erit ergo proportio eb ad kb sicut dh ad fi, et eadem
          proportio erit de ad kf et eh ad ki propter similitudinem triangulorum sicut eb ad kb. Sicut ergo de ad fk, ita eh ad ki; permutatim ergo
          sicut de ad eh, ita
          fk ad ki. Ergo illi
          excessus proportionabiliter sunt divisi, quod fuit probandum
          (cfr. figura 2).

          [image: ]
Fig. 2
[image: link to parallel text] 5. Forte dicitur, quod si gf
          est secunda unius figurae mediae, quod gi non
          erit prima. Erit ergo prima eiusdem figurae aut maior gi aut minor. Sit primo maior, et sit lm. Quam extendo sursum usque ad n, ita quod ln sit
          aequalis gf, et traho lineam fn aequedistanter basi propter eandem
          longitudinem duarum linearum gf et ln. Inter duo ergo puncta g, l sunt signandae plures
          primae et secundae lineae figurarum mediarum. Signetur una, et sit
          op prima, qua extendatur usque ad secundam
          eiusdem figurae. Aut proveniet infra lineam fn aut in ipsa linea aut supra. Non infra ipsam
          nec in ipsa, quia est secunda figurae minoris capacitatis; ergo
          deberet esse longior. Non tamen potest poni longior, quia gf est posita inter figuras minoris capacitatis
          et esset brevior, quod est impossibile, quia non diminuendo
          procederem secundae lineae versus capaciores figuras incedendo, quod
          est impossibile. Eodem modo dicetur impossibile sequi, si dicatur,
          quod prima eius erit minor gi. Cum ergo nec
          maior nec minor dici potest, ipsa gi erit
          prima, quia omnes excessus secundarum a primis in eadem proportione
          dividentur, quod fuit probandum.

          [image: link to parallel text] 6. Haec videtur declaratio undecimae conclusionis
          vestrae, in qua pendet tota demonstratio quadraturae. Nam qualis est
          proportio hq ad qi,
          talis est hr ad rb.
          Istarum autem quattuor linearum proportionalium tres primae sunt
          notae: hq prima, quia subtractio sagittae
          quadrati vel alterius mediae a sagitta trigoni; qi secunda est etiam nota, quia excessus primae
          tetragoni a prima trigoni; tertia etiam est nota hr, quia sagitta trigoni. Si ergo multiplices hr in qi et dividas per
          hq, habetur rb nota,
          quae adiuncta primae trigoni ra erit ab nota prima circuli sive semidiameter, quod
          intenditur. Sed non video, cur duae lineae hb
          et bd, concludentes omnes illos excessus
          primarum et secundarum, non possent esse curvae omni genere
          curvitatis, et tunc non procederet demonstratio. Erit enim illud,
          quod in decima tua conclusione dixisti, quod primae capaciorum erunt
          semper maiores et secundae minores.

          [image: link to parallel text] 7. Haec volo mihi in praesenti sufficiant. Multa
          habeo, quae me movent, quod istae coincidentiae sive intensiones et
          remissiones formarum non per lineas rectas signari debeant, ut
          moderni ponunt, sed in aliud tempus reservo. Vale.

          [image: link to parallel text] 8. Detur venerabili nostro fideli dilecto magistro
          Georgio Peurbachio Astronomo.

        
  Traduzione italiana

  Le trasformazioni geometriche

          [image: link to parallel text] 1. A Paolo, [figlio] del maestro Domenico, fisico
          fiorentino, uomo eccellente e dottissimo, il libro sulle
          trasformazioni geometriche del cardinale Niccolò da Cusa[1].

          [image: link to parallel text] 2. Sebbene gli antichi dotati di grande ingegno
          abbiano tentato, attraverso una diligente ricerca, di conoscere e
          trasmettere ai posteri molte cose un tempo oscure, e abbiano fatto
          utili progressi in molte delle arti più importanti e più nobili,
          tuttavia, nelle riflessioni più profonde, non hanno raggiunto tutto
          ciò che desideravano. Il sommo protettore di tutte le cose ha
          prestabilito questo universo affinché in noi la forza divina di
          comprendere non si indebolisse, ma fosse rivolta con interesse ancor
          più vivo a quelle cose che sono nascoste, ma accessibili alla
          conoscenza. E certamente più forte è la passione con cui siamo
          spinti ad esplorare ciò che è oscuro, maggiore è la tranquillità con
          cui ci compiaciamo della potenza della nostra mente. Tuttavia, tra
          le questioni che sono state d’ostacolo alle faticose speculazioni
          geometriche, ce n’è una che è rimasta sconosciuta a tutti quelli il
          cui spessore intellettuale è stato particolarmente apprezzato dai
          libri a noi tramandati, ossia la possibilità di stabilire
          un’uguaglianza tra ciò che è retto e ciò che è curvo[2] o la loro reciproca trasformazione. A causa
          dell’impossibilità dell’impresa e per il fatto che la natura ripugna
          la coincidenza di un’opposizione tanto grande, alla maggior parte di
          coloro che si sono dedicati a questa ricerca, dopo immensi sforzi, è
          sembrato che fosse a noi negata la via per giungere a tale
          conoscenza. Io, invece, pensando che la difficoltà di questa ricerca
          stesse piuttosto nella debolezza della [mia] conoscenza e
          nell’incostanza della [mia] attenzione, non avendo un acume
          particolarmente spiccato tra coloro che vi si dedicano – acume che
          l’oscurità dell’argomento richiede –, nel tempo libero che avevo a
          disposizione mi sono dedicato alla nuova arte[3], affinché con essa potessi raggiungere ciò che cercavo, e,
          in vista di fini più elevati, ho faticato molto su di essa, finché
          ho trovato, tra tutte le mie riflessioni, la seguente facile
          soluzione. Tuttavia, poiché non potevo confidare nell’oscurità e
          nella debolezza del mio ingegno per comprendere un’arte così
          importante e finora sconosciuta, dalla quale non soltanto dipende la
          perfezione della trasformazione geometrica, ma si delinea anche
          un’introduzione a studi più elevati, ho deciso di ricorrere
          direttamente a te, esaminatore espertissimo e difensore zelante
          della verità, e di rivelare senza indugio il risultato della mia
          ricerca a un amico coltissimo, affinché esso sia valutato sulla
          bilancia del giudice più equilibrato. Pertanto, carissimo amico,
          anche se ti occupi di cose ben più impegnative, non disprezzare
          questo mio lavoro come rozzo e confuso; essendo corto, si legge
          velocemente e si comprende molto facilmente. Dunque, in nome
          dell’amicizia e dell’affetto cordiale che ci lega così tanto e
          ininterrottamente dagli anni della gioventù e dell’adolescenza, ti
          prego ora di prestare massima attenzione alla correzione, e di non
          parlarne ad altri, se non dopo aver apportato le dovute
          correzioni.

          [image: link to parallel text] 3. Dopo innumerevoli tentativi nei quali mi sono
          sforzato – tuttavia sempre vanamente – di pervenire all’arte
          intrapresa[4], rivolgendo l’attenzione al principio di cui mi ero
          servito ne La dotta
          ignoranza[5], mi si è aperta la strada. Inoltre, l’arte che cercavo,
          oltre a ciò che è stato già tramandato in geometria, permette la
          trasformazione di ciò che è curvo in ciò che è retto e di ciò che è
          retto in ciò che è curvo. Poiché il rapporto tra queste grandezze
          non è esprimibile attraverso un numero razionale, è necessario che
          il segreto di tale rapporto si celi proprio nella coincidenza degli
          estremi. Poiché essa ha luogo nel massimo – com’è stato esposto
          altrove – e il massimo è il cerchio che non si conosce, si dimostra
          qui che lo stesso deve essere cercato nel minimo, che è il
          triangolo[6].

          [image: link to parallel text] 4. Ora, si chiamano poligoni tutte le figure con
          molti angoli, equilateri quelle che hanno lati uguali,
          isoperimetrici quelle che, avendo la stessa lunghezza dei lati,
          hanno lo stesso perimetro[7]; è evidente che, tra di essi, il triangolo ha
          l’ampiezza[8] minore. E, poiché un isoperimetrico è tanto più ampio
          quanto più angoli avrà, il cerchio sarà la figura con la superficie
          più ampia tra tutte quelle isoperimetriche[9]. A questa, tuttavia, non si può arrivare moltiplicando gli
          angoli[10], così come non si può determinare il massimo
          numericamente. Dunque, nessun poligono può avere con la figura
          circolare isoperimetrica un rapporto esprimibile attraverso un
          numero razionale.

          [image: link to parallel text] 5. Ma, poiché la differenza di ampiezza tra le
          figure isoperimetriche corrisponde alle differenze [dei
          semidiametri] dei cerchi inscritti ad esse[11], come è stato già precedentemente osservato, allora né il
          cerchio inscritto, che è sempre minore, né il cerchio circoscritto,
          che è sempre maggiore, avrà con il cerchio isoperimetrico un
          rapporto esprimibile attraverso un numero razionale[12]. Ma i semidiametri di questi cerchi, di cui abbiamo
          parlato, sono massimamente disuguali nel triangolo, [dove la
          differenza è massima], mentre sono progressivamente meno disuguali
          negli altri [dove la differenza diminuisce]; mentre nel cerchio essi
          coincidono, poiché, in questo caso, l’inscritto, il circoscritto e
          la circonferenza coincidono. Bisogna cercare attraverso quale arte
          vogliamo arrivare a quella coincidenza e a ciò che ci siamo
          proposti.

          [image: link to parallel text] 6. Ora, per giungere all’arte cercata, sembra che
          sia necessario: in primo luogo, che a una data retta sia data una
          curva uguale[13]; in secondo luogo, che il rapporto tra una curva e l’altra
          sia lo stesso di quello tra una retta e l’altra; in terzo luogo,
          che, tra linee date, se ne assegnino due proporzionali; in quarto
          luogo, che, secondo il rapporto di due rette date, si sappia che a
          una terza data si dà una quarta[14]. Il primo punto è stato sin qui sconosciuto, il secondo
          non è stato ancora esaminato, il terzo è stato trattato da pochi in
          modo confuso[15], il quarto è stato chiaramente spiegato da molti. In
          questi quattro punti è racchiuso tutto ciò che è utile all’arte
          della trasformazione, come cercherò di spiegare negli esempi qui
          sotto riportati, grazie alle seguenti premesse che sono necessarie a
          tale scopo.

          
            Prima premessa

            [image: link to parallel text] 7. Tutti ammettono che sia possibile che una
            linea curva non sia né maggiore né minore di una linea retta data,
            ma non tutti affermano che essa possa essere trovata. Dunque, è
            possibile che la circonferenza di un qualsiasi cerchio non sia né
            maggiore né minore del perimetro di un dato poligono, così che
            queste figure risultino isoperimetriche. Ma come si possa ottenere
            ciò, è appunto quello che vogliamo indagare[16].

            [image: link to parallel text] 8. Poiché il cerchio circoscritto a un poligono
            equilatero, ossia equiangolo[17], è tanto maggiore quanto meno angoli il poligono ha – e
            quello inscritto tanto minore –, allora nessuno può negare che
            ogni cerchio inscritto a un poligono equilatero è minore del
            cerchio isoperimetrico e che ogni cerchio circoscritto è maggiore.
            Di conseguenza, poiché l’isoperimetrico cade tra l’inscritto e il
            circoscritto, esso ha un semidiametro maggiore di ogni
            semidiametro di qualsiasi cerchio inscritto a un qualsiasi
            poligono isoperimetrico e minore del semidiametro del
            circoscritto[18]. Dopo tanti procedimenti ben più difficili, ciò che
            cerchiamo si paleserà invece come la semplice conseguenza di
            questa proposizione.

            [image: link to parallel text] 9. Il semidiametro del cerchio isoperimetrico al
            triangolo inscritto si rapporta alla linea tracciata dal centro
            del cerchio, al quale il triangolo è inscritto, al punto che segna
            la quarta parte del lato [del triangolo] secondo un rapporto di 5
            a 4[19].

            [image: link to parallel text] 10. Intorno al centro a si
            descriva un cerchio, nel quale è inscritto il triangolo BCD, con
            il lato bc diviso in quattro parti uguali
            attraverso [i punti] e, f, g; dico che, se
            si prolunga la linea tracciata da a a e di un quarto della sua lunghezza, ottenendo
            così ah, allora questa sarà il semidiametro
            del cerchio la cui circonferenza è uguale [alla somma dei] tre
            lati del triangolo[20](cfr. figura 1).

            [image: link to parallel text] 11. Ciò può essere provato molto facilmente in
            questo modo. Infatti, è chiaro che la linea tracciata da a a f sarà il
            semidiametro del cerchio inscritto, e precisamente la più piccola
            di tutti i cerchi inscritti ai poligoni isoperimetrici; e, nello
            stesso modo, la linea tracciata da a a b sarà il semidiametro del cerchio
            circoscritto, e precisamente la più grande di tutti i cerchi
            circoscritti ai poligoni isoperimetrici.

            [image: ]
Fig. 1
Se tracci una linea da a a i (vicino a f) e la
            prolunghi secondo il rapporto del segmento[21] if sul lato di bc, ottenendo così ak, è
            chiaro che essa sarà minore del semidiametro del cerchio
            isoperimetrico, essendo quest’ultimo il più grande di tutti i
            semidiametri dei cerchi inscritti ai poligoni isoperimetrici.
            Analogamente, se si prolunga la linea tracciata da a al punto l (vicino a
            b) secondo il rapporto del segmento di lf su bc, ottenendo così
            am, è chiaro che essa sarà maggiore di
            quella cercata, poiché quella che cerchiamo è la più piccola di
            tutti i ‹semi›diametri dei cerchi circoscritti ai poligoni
            isoperimetrici. Si può, pertanto, tracciare una linea da a verso qualsiasi punto tra l e i che, prolungata
            secondo il rapporto del segmento che cade tra questo punto e f sul lato bc, sarà
            uguale alla linea che cerchiamo[22].

            
            [image: link to parallel text] 12. Allo stesso modo, se si prolunga la linea ai secondo il rapporto di ib su bc, ottenendo così
            an, è chiaro che questa sarà minore di
            quella che cerchiamo. E ancora, se si prolunga al secondo il rapporto di lb su bc, ottenendo così
            ao, è certo che essa sarà maggiore di
            quella che cerchiamo. C’è, quindi, un punto tra l e i verso cui si
            traccia la linea da a, tale che,
            prolungando la linea secondo il rapporto del segmento che si trova
            tra questo punto e b sul lato bc, essa sarà uguale a quella che cerchiamo. Da
            qui, trovato il punto, per esempio i, verso
            cui si traccia una linea da a, se si
            prolunga quest’ultima secondo il rapporto di entrambi i segmenti
            (verso b e verso f)
            sul lato del triangolo, allora essa resta minore; e si trova un
            altro punto, per esempio l, verso cui è
            tracciata una linea, che, prolungata secondo il rapporto dell’uno
            o dell’altro segmento sul lato del triangolo, risulterà sempre
            maggiore di quella che cerchiamo. Così, ci sarà un terzo punto,
            verso cui è tracciata una linea da a, che,
            prolungata secondo il rapporto di qualsiasi segmento sul lato del
            triangolo, non sarà né maggiore né minore di quella che cerchiamo.
            È chiaro che questo punto non può che essere e, poiché soltanto in esso il prolungamento
            secondo i rapporti dell’uno e dell’altro segmento può essere lo
            stesso[23].

            
            
            [image: link to parallel text] 13. Potrai anche dire che, se la linea ai si prolunga secondo il rapporto di fi su bc, essa è minore,
            e, analogamente, se viene prolungata secondo il rapporto del
            quadrato di if sul quadrato di bf, essa è minore. E se al si prolunga secondo il rapporto di lf su bc, essa è
            maggiore; analogamente, se viene prolungata secondo il rapporto
            del quadrato di lf sul quadrato di bf, essa è maggiore. Ci sarà, dunque, un punto
            tra l e i tale che
            la linea tracciata dal centro a a questo
            punto e prolungata secondo i due rapporti già menzionati non sarà
            né maggiore né minore [di quella cercata] e questo punto è
            necessariamente e.

            [image: link to parallel text] 14. Potrai ancora aggiungere un terzo rapporto:
            se ai si prolunga secondo il rapporto del
            quadrato di if sul quadrato di bf, secondo il rapporto di if su bc e secondo il
            rapporto di bi su bc, essa sarà sempre minore, e prolungando al secondo quei rapporti, essa sarà maggiore.
            Ci sarà, dunque, un punto tale che la linea tracciata dal centro
            a verso tale punto e prolungata secondo
            quei tre rapporti non sarà né maggiore né minore di quella cercata
            e questo è il punto e, equidistante da b e da f[24].

            [image: link to parallel text] 15. Ciò può essere tuttavia dimostrato anche in
            questo modo: è chiaro che in tutti i poligoni isoperimetrici la
            linea tracciata dal centro al punto medio del lato è il
            semidiametro del cerchio inscritto; e quanto maggiore è l'ampiezza
            del poligono, tanto più la linea si avvicinerà al semidiametro del
            cerchio isoperimetrico; allo stesso modo, la linea tracciata dal
            centro all’estremità del lato è il semidiametro del cerchio
            circoscritto e sarà progressivamente tanto minore quanto più ampio
            sarà il poligono. Dunque, tra questi due punti, cioè, tra
            l’estremità e il punto medio del lato di un poligono, cade un solo
            punto tale che la linea tracciata dal centro e prolungata secondo
            il rapporto del quadrato del segmento compreso tra il punto
            d’intersezione e il punto medio del lato e il quadrato del
            semilato, o prolungata secondo il rapporto del segmento sul lato,
            sarà uguale al semidiametro del cerchio isoperimetrico. Su ciò non
            ci può essere alcun dubbio.

            [image: link to parallel text] 16. Capita tuttavia che nei diversi poligoni
            questo punto si trovi a una diversa distanza dagli altri due
            punti, vale a dire, dall’estremità e dal punto medio del lato:
            quanto più ampio è il poligono, tanto più ci si avvicina al punto
            medio del lato e ci si allontana dall’estremità. Pertanto nei
            poligoni più estesi questo punto si avvicina progressivamente alla
            metà del lato fino a coincidere con tutti e tre i punti nel
            poligono più ampio; analogamente, è necessario che nei poligoni
            meno ampi questo punto si allontani dalla metà del lato fino a
            raggiungere la massima distanza da questi due punti nel poligono
            minore. Di conseguenza, questo punto medio, che ha la stessa
            massima distanza dalle estremità, è il punto e, e, nel triangolo, che è la figura meno
            ampia, questo punto è ciò che si cercava. Perciò ogni semidiametro
            del cerchio circoscritto cade tra il centro a e qualche punto della linea be prolungata secondo i rapporti premessi del
            segmento prolungato verso b, e così ae, prolungata in questo modo, è la più piccola
            di tutte le altre linee; essa è il semidiametro del cerchio
            isoperimetrico, poiché è il più piccolo semidiametro di tutti i
            semidiametri dei cerchi che si possono circoscrivere, con cui
            coincide il semidiametro più grande dei cerchi che si possono
            inscrivere. Perciò nel punto e si realizza
            la coincidenza dei semidiametri dei cerchi inscrivibili che
            crescono da f verso e e i semidiametri dei cerchi circoscrivibili
            che decrescono da b verso e, una volta che sono stati apportati i
            prolungamenti secondo i rapporti premessi dei segmenti verso b da un lato e verso f
            dall’altro[25].

          
          
            Seconda premessa

            [image: link to parallel text] 17. Ho già sostenuto precedentemente[26] che si deve premettere come si giunge al rapporto tra
            una retta e l’altra, e a quello tra una curva e l’altra, poiché,
            come dimostrerà ciò che segue, la perfezione dell’arte delle
            trasformazioni che cerchiamo non potrà essere ottenuta senza tener
            conto di quest’aspetto. E, per questa indagine, ho preso in
            considerazione un triangolo rettilineo[27] nel quale la linea tracciata dal segmento di un lato al
            corrispondente segmento di un altro lato sia parallela al [terzo]
            lato che chiude il triangolo, e stia a quest'ultimo nello stesso
            rapporto con cui il segmento del primo lato, da cui è stata
            tracciata la linea, sta all’intero lato. Volendo cercare in un
            arco ciò che ho trovato nel lato dritto, ho notato che se
            disegnassi il triangolo con un lato curvo e un altro dritto,
            allora non si potrebbe tracciare dalla parte del lato curvo al
            corrispondente segmento dell’altro lato alcuna linea che stia al
            lato dritto secondo il rapporto cercato, se il terzo lato fosse
            dritto. Infatti, se il lato curvo fosse convesso, è chiaro che una
            linea dritta tracciata dalla sua metà alla metà del lato dritto
            sarebbe maggiore della metà del lato dritto che chiude il
            triangolo. E se invece fosse concavo, la linea dritta tracciata
            dalla sua metà alla metà del lato dritto sarebbe necessariamente
            minore della metà del lato dritto che chiude il triangolo.

            [image: link to parallel text] 18. Se il [terzo] lato fosse curvo come l’altro,
            ossia convesso se è convesso o concavo se è concavo, la linea
            tracciata dal segmento corrispondente sarà maggiore o minore,
            proprio come nel caso precedente. Ma, se quello stesso lato fosse
            convesso, mentre l’altro è concavo ed entrambi appartenessero alla
            stessa circonferenza e fossero uguali, la linea tracciata
            attraverso i segmenti corrispondenti ai lati curvi serebbe
            necessariamente maggiore di quella che deve essere cercata secondo
            il rapporto. Infatti, se le corde fossero sottese agli archi, esse
            formerebbero lo stesso angolo dell’arco, e, se fossero corde di
            semiarchi, formerebbero di nuovo lo stesso angolo[28]. E poiché le corde dei semiarchi sono maggiori delle
            semicorde dell’arco intero, è evidente che la linea tracciata
            dalla metà [di uno] alla metà [dell’altro] sarà maggiore, a
            seconda dell’eccesso della corda del semiarco sul semiarco
            dell’arco intero.

            [image: link to parallel text] 19. È necessario dunque che l’altro lato sia più
            corto di quello curvo. Tuttavia quello concavo non può essere più
            corto. Infatti, se le corde fossero sottese a quegli archi,
            l’angolo compreso tra le corde sarebbe minore dell’angolo compreso
            tra gli archi e minore dell’angolo compreso tra le corde dei
            semiarchi. Da ciò, la linea tracciata da segmento a segmento
            sarebbe maggiore di quella richiesta. Di consequenza, è necessario
            che il triangolo che cerchiamo sia tale che, dei suoi tre lati,
            due siano curvi e di diversa lunghezza, cosicché il lato maggiore
            sia l’arco più grande della circonferenza e chiuda la superficie
            [del triangolo] in modo concavo, mentre l’altro [lato] minore sia
            l’arco più piccolo della stessa circonferenza e chiuda la
            superficie del triangolo stesso in modo convesso; il terzo lato
            sia dritto. Inoltre, se sottendi le corde a questi lati curvi, è
            necessario che l’angolo compreso tra le corde sia maggiore
            dell’angolo compreso tra gli archi, che l’angolo compreso tra le
            corde del semiarco sia maggiore dell’angolo compreso tra gli archi
            e minore dell’angolo compreso tra le corde degli interi archi
            interi, e precisamente, tanto minore quanto più le corde dei
            semiarchi eccedono le semicorde degli interi archi. E, ritenendo
            che con questa via sarebbe stato possibile che, dato il triangolo
            in questione, le linee tracciate dai segmenti fossero minori,
            maggiori o uguali a quelle che cerchiamo, ho suggerito di cercare
            un triangolo il cui lato dritto fosse il semidiametro del cerchio
            cui appartengono i lati curvi, e il lato curvo maggiore fosse un
            quadrante.

            [image: link to parallel text] 20. Ho descritto attorno al centro a il quadrante bc e, col
            piede fisso del compasso in c, ho descritto
            il semicerchio ade (cfr. figura 2). Ho diviso a
            metà l’arco bc nel punto f e ho descritto attorno a f il semicerchio gh, il
            cui semidiametro è uguale alla metà di ac.
            Attorno a b ho descritto il semicerchio
            occulto[29] ik e ho cercato nella sua
            circonferenza un punto attorno a cui descrivere un arco (tenendo
            il piede fisso del compasso su questo punto e l’altro esteso fino
            a b) che si sviluppa passando attraverso il
            semicerchio minore gh verso quello maggiore
            ade, in modo che il punto di intersezione
            di questo arco con il semicerchio gh, ossia
            l, sia il centro dell’intero arco, avente
            la stessa distanza da b e dal punto
            d’intersezione dell’arco con de, ossia m. In modo analogo, ho tracciato così la linea
            cm e ho ottenuto il triangolo cercato CBM.
            Inoltre, cercando il punto m, ho trovato
            che esso deve distare necessariamente da d
            una lunghezza pari alla metà dell’arco bc,
            cioè alla metà del quadrante. Ora, questo punto cade tra il più
            vicino e il più lontano possibile. Infatti, posto il piede del
            compasso sulla circonferenza occulta aki,
            per esempio sul punto a, allora il punto
            più vicino sarà d, che cade sull’arco bc.

            [image: ]
Fig. 2
E se porrò il compasso sul punto d’intersezione dell’arco
            occulto aki e de,
            cioè su i, e descriverò l’arco bn, allora n sarà il
            punto più lontano. Infatti non sarà possibile trovare sull’arco
            de alcun punto più lontano da d. Ma è certo che la distanza tra d e n è pari a un
            quadrante sull’arco de – e la metà di
            questa distanza è il punto m – e in esso si
            trovano gli estremi ridotti all’uguaglianza media. Con questa via
            ho scoperto il triangolo cercato.

            [image: link to parallel text] 21. Dopo di ciò ho notato che, prolungando cm all’infinito e tracciando allo stesso modo
            una linea da l attraverso f, queste linee, non essendo parallele, si
            devono incontrare necessariamente in un punto. Dunque ho segnato
            il loro punto di intersezione con o. Così,
            ho osservato che tutte le linee che collegano una parte all’altra
            nel loro prolungamento devono convergere necessariamente con
            quelle due linee, nè una deve convergere o prima dell’altra. Di
            conseguenza tutte convengono nel punto o.
            Pertanto, se da o si tracciasse una linea
            passante per una qualsiasi punto del quadrante bc fino all’arco bm,
            allora il segmento di questa linea retta, che si trova tra i due
            archi, si rapporterà alla retta cm, come la
            parte dell’arco compresa tra b e il punto
            d’intersezione della linea retta e l’arco si rapporta a tutto il
            quadrante bc. Questo significa che tra
            l’arco bf e il quadrante bc sussiste lo stesso rapporto di quello
            esistente tra la linea fl e la linea cm, e questo era ciò che si cercava.

          
          
            Terza premessa

            [image: link to parallel text] 22. La terza cosa che bisogna premettere è in che
            modo, tra linee date, se ne possano trovare due proporzionali. Da
            molto tempo si sa perfettamente che, se due linee date vengono
            unite per formare il diametro di un cerchio e una corda le taglia
            ad angolo retto, allora la semicorda è il medio proporzionale tra
            questi, poiché è necessario che la semicorda sia il medio tra la
            freccia e la parte restante del diametro[30].
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Fig. 3
Se dunque due linee di lunghezza indefinita come ab e cd si taglieranno
            ad angolo retto nel punto e, e da e verso d traccerò la
            linea minore, cioè ef, e da e verso a la maggiore,
            cioè eg, e descriverò due semicerchi, uno
            sulla linea ec attorno al centro, per
            esempio k, l’altro sulla linea ea attorno al centro, per esempio h, allora si noterà che l’arco del semicerchio
            il cui centro si trova sulla linea ea
            taglia l’arco dell’altro semicerchio sulla linea eb nel punto l e sulla
            linea ec nel punto i
            (cfr. figura 3). Nessuno può negare che ei
            e el, per la suddetta regola
            conosciutissima del medio proporzionale unico, sono i medi tra ef ed eg.

            [image: link to parallel text] 23. Per ottenere praticamente questi medi
            facilmente, prendi uno gnomone e una linea che, applicata al lato
            dello gnomone, formi un angolo retto (cfr. figura 4). Stando alla
            premessa, traccia due linee di lunghezza indefinita che si
            tagliano ad angolo retto; poni in seguito l’angolo retto dello
            gnomone sulla linea eb e fai passare un
            lato su f; nota dove il secondo lato taglia
            la linea ec, applica lì il regolo[31] al lato di cui ho parlato in modo da ottenere un angolo
            retto. Se la linea condotta passerà per g,
            otterrai ciò che cercavi. Altrimenti, avvicina o allontana lo
            gnomone su eb, finché ciò si verifichi, e
            otterrai i due medi che cercavi. Se qualcuno lo desidererà, potrà
            trovare facilmente anche altri procedimenti; tuttavia, essendo il
            presente metodo chiaro, per il momento è sufficiente[32].
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Fig. 4
[image: link to parallel text] 24. In che modo invece si possa aggiungere a tre
            linee date proporzionali una quarta in proporzione continua
            risulta evidente da quanto già detto in precedenza[33].

          
          
            Quarta premessa

            [image: link to parallel text] 25. La quarta cosa [che bisogna premettere],
            ossia in che modo ottieni che, in rapporto a due linee date, a una
            terza si dia una quarta per mezzo di due triangoli aventi un
            angolo comune, e gli altri uguali, nella pratica risulta a tutti
            quasi evidente (cfr. figura 5). Infatti, se
            ab è una linea, cd
            un’altra ed ef una terza, unisci ab e cd a un angolo a
            piacere, ghi, e chiudi il triangolo.
            Quindi, prolunga il lato gh uguale ad ab finché non sarà uguale a ef, e sia questo gk.
            Traccia kl, parallela a hi, e prolunga gi fino
            ad essa, e sia questa gm. Nessuno, tranne
            un ignorante, può mettere in dubbio che la linea km si rapporta a gk, che
            è uguale a ef, come hi, che è uguale a cd,
            si rapporta a gh, che è uguale ad ab. Questo è quanto stabilito dalle
            premesse.

            [image: ]
Fig. 5

          
            La trasformazione delle linee una nell’altra – capitolo
            primo

            [image: link to parallel text] 26. Nelle figure geometriche qualsiasi
            trasformazione è una trasformazione o di una linea in una linea o
            di una superficie in una superficie o di un solido in un
            solido[34]. Tre dunque sono i capitoli, che è opportuno trattare
            seriamente con l’aiuto di esempi.

            [image: link to parallel text] 27. Se intendi trasformare una linea retta in una
            curva di circonferenza, risolvi la linea retta in un triangolo o
            in un poligono regolare e, dalla prima premessa, determina il
            cerchio isoperimetrico la cui circonferenza è uguale alla linea
            retta data[35].

            [image: link to parallel text] 28. Se cerchi di risolvere una linea retta in un
            arco qualsiasi di circonferenza, risolvila nella circonferenza del
            cerchio intero e, dal rapporto di quella con l’arco di
            circonferenza, troverai ciò che stai cercando. Infatti, il
            rapporto delle circonferenze è uguale a quello dei
            semidiametri[36].

            [image: link to parallel text] 29. Se vuoi risolvere una linea retta data in un
            quadrante, allora ciò che cerchi è un quarto della circonferenza
            del cerchio il cui semidiametro è il quadruplo [di quello del
            cerchio la cui circonferenza è uguale alla linea retta data].

            [image: link to parallel text] 30. Se cerchi di trasformare una linea retta data
            in un arco di circonferenza di un cerchio dato, per prima cosa
            trasformala nella circonferenza del cerchio e, una volta
            conosciuto il rapporto dei semidiametri dei cerchi, sarà noto
            quanto cercato[37].

            [image: link to parallel text] 31. Se vuoi trasformare una linea curva[38] in una linea retta, non devi far altro che seguire la
            quarta premessa[39], eppure so che, nel far ciò, quasi tutti si sono
            sbagliati. Infatti, una linea curva può essere trasformata in una
            linea retta solo se la si rapporta a una qualche linea retta
            trasformata in linea curva. Se dunque ti proponi di fare ciò,
            trasforma prima la linea retta in una circonferenza e prendi il
            semidiametro di questo cerchio come prima linea. In seguito,
            prendi un terzo della linea retta trasformata o un altro segmento
            come seconda linea; e indica come terza linea il semidiametro del
            cerchio la cui circonferenza è ciò che ti proponi di rettificare.
            Chiudi i triangoli che hanno un angolo comune e gli altri uguali;
            i lati opposti all’angolo comune risultano paralleli. Infatti, il
            secondo lato sarà una parte della linea cercata, per esempio un
            terzo, se il lato parallelo al primo è un terzo della
            circonferenza; se è altro, sarà diverso. In questo modo si conosce
            la trasformazione di una circonferenza in una linea retta e si
            conosce anche la trasformazione di un arco, che è la parte
            aliquota[40] e conosciuta della circonferenza.

            [image: link to parallel text] 32. Se ignori il rapporto di un arco dato con la
            circonferenza, che cerchi di rettificare, tieni conto della
            seconda premessa, e fai passare una linea dal punto d’intersezione
            o attraverso l’arco che cerchi o una sua
            parte, fino all’altro arco e segna la linea compresa tra i due
            archi. Poi, fa’ che il semidiametro sia la prima linea, che la
            linea uguale al quadrante o a una sua parte aliquota sia la
            seconda, e chiama terza linea quella che hai tracciato tra gli
            archi. Dalla quarta premessa troverai la linea cercata attraverso
            i triangoli.

            [image: link to parallel text] 33. E si può ottenere ciò che cerchi solo in
            questo modo, che ti permette anche di trasformare una retta data
            nell’arco di una circonferenza data, anche se il rapporto
            dell’arco con la circonferenza non è nota. Ebbene, con questo
            procedimento, ciò è possibile.
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Fig. 6
Prendi il semidiametro del cerchio come primo lato del
            triangolo, la linea retta corrispondente alla quarta [parte] della
            circonferenza come secondo [lato] e chiudi il triangolo
            (cfr. figura 6). Così, se il semidiametro è ab e la quarta parte della circonferenza bc, la linea ca chiude
            il triangolo. Fa’ cadere una linea o una sua parte aliquota
            all’interno di questo triangolo parallelamente a bc, e sia essa de.
            Quindi, traccia da b verso c una linea uguale al semidiametro ab, ossia bf[41]; traccia af e indica con la
            lettera g il punto di intersezione con de. Poi torna alla seconda premessa e tira una
            linea dal comune punto di intersezione affinché si trovi tra gli
            archi un segmento uguale a dg; questo è il
            semiarco uguale alla linea data o la parte aliquota dell’arco
            cercato, se hai lavorato con una parte della linea.

            [image: link to parallel text] 34. Con questo metodo puoi anche trasformare una
            curva data e qualsiasi arco di una qualsiasi circonferenza in un
            diverso arco di un altro cerchio[42], trasformando per prima cosa la curva stessa in una
            linea retta e in seguito questa linea retta in un arco della
            circonferenza data secondo il procedimento illustrato. Ciò è stato
            sufficientemente spiegato in questo capitolo sulla trasformazione
            delle linee.

          
          
            La trasformazione delle superfici l’una nell’altra –
            capitolo secondo

            [image: link to parallel text] 35. Per spiegare sufficientemente la
            trasformazione delle superfici ed evitare inutili discorsi,
            tralascio, in quanto nota, la trasformazione delle superfici
            rettilinee[43]. Infatti, che il triangolo possa essere diviso in più
            triangoli e trasformato in un qualsiasi rettangolo[44] e questi, a sua volta, in un qualsiasi quadrato, e più
            quadrati in uno solo, o che un solo triangolo possa essere diviso
            in più triangoli equilateri e, similmente, anche il triangolo e il
            quadrato e così tutti i poligoni equilateri e in non equilateri in
            altre figure, tutto ciò ti è noto dagli Elementi di geometria e dal rapporto di
            proporzionalità tra i cerchi e i quadrati, per cui tralascio tutto
            questo, dato che è mia intenzione accrescere quanto già si sa e
            non ripetere ciò che è trito e ritrito. Così, grazie a ciò che ho
            trattato in precedenza, questo capitolo può essere facilmente
            compreso.

            [image: link to parallel text] 36. Se proponi di trasformare una superficie
            circolare in una rettilinea, per prima cosa risolvi la sua
            circonferenza in una linea retta; quindi, aggiungi il semidiametro
            della circonferenza ad angolo retto e chiudi il triangolo; così la
            superficie circolare è trasformata in una superficie triangolare.
            Se vuoi trasformarla in un rettangolo o in un quadrato, ciò è
            possibile facilmente a partire dal triangolo. Infatti, si quadra
            il cerchio, prendendo come lato del quadrato il medio
            proporzionale tra il semidiametro e la metà della circonferenza. È
            dimostrato dalle menti più acute che dal prodotto del semidiametro
            per la metà della circonferenza risulta l’area di un rettangolo
            che non sarà né maggiore né minore dell’area del cerchio[45]. Infatti, il prodotto del semidiametro del cerchio
            inscritto per la metà del perimetro del poligono inscritto è
            uguale all’area del poligono inscritto[46]; il prodotto del semidiametro del cerchio circoscritto
            per la metà del perimetro del poligono circoscritto è maggiore
            dell’area del poligono e minore dell’area del cerchio e,
            parimenti, il prodotto del semidiametro del cerchio inscritto per
            la metà del perimetro di ogni poligono circoscritto è uguale
            all’area di questo e maggiore dell’area del cerchio. Di
            conseguenza il prodotto del semidiametro per la metà della
            circonferenza del cerchio non può essere né maggiore né minore
            [dell’area del cerchio].

            [image: link to parallel text] 37. Se tuttavia cerchi di trasformare l’area di
            una superficie rettilinea nell’area di una circolare[47], per prima cosa risolvi quella circolare, come già
            detto, in un poligono, per esempio in un quadrato, e prendi il
            semidiametro del cerchio come [prima] linea e il lato del quadrato
            come [seconda] linea, e, dopo aver trasformato la superficie
            rettangolare in un quadrato, prendi il lato [del quadrato] come
            terza linea: dalla quarta premessa troverai la quarta linea che
            sarà il semidiametro del cerchio cercato. Nota come non si arrivi
            alla trasformazione di un arco di circonferenza in una linea retta
            se non per mezzo della trasformazione di una qualche linea retta
            in un arco di circonferenza; e, inversamente, non si giunge alla
            trasformazione di una superficie rettilinea in una circolare, se
            non attraverso la trasformazione di una qualche superficie
            circolare in una rettilinea. L’arcano che qui si nasconde non è
             oggetto della presente
            trattazione[48].

            [image: link to parallel text] 38. Se tuttavia vuoi trasformare una qualsiasi
            porzione di superficie circolare che cade tra due raggi[49], che sia o no proporzionale all’intera superficie[50], lo puoi fare risolvendo in una retta l’arco compreso
            tra i due settori e moltiplicando il semidiametro per la metà
            dell’arco stesso.

            [image: link to parallel text] 39. Se cerchi di ridurre la porzione compresa tra
            una corda e l’arco in una superficie delimitata da lati
            dritti[51], per prima cosa risolvi tutta la porzione compresa tra i
            raggi tracciati dal centro nel modo già illustrato in un cerchio.
            Quindi, trasforma, allo stesso modo, il triangolo compreso tra i
            raggi e la corda in un cerchio e, dopo averlo sottratto dal primo,
            resterà una porzione [di cerchio] ridotta in una superficie
            compresa tra le due circonferenze, che può essere ridotta nella
            superficie di un rettangolo attraverso la risoluzione di ciascun
            cerchio in quadrato e la sottrazione di ciascun quadrato
            dall’altro, visto che la differenza è uguale a questa porzione.
            Essa può dunque essere risolta nella superficie di un quadrato e
            attraverso questa nella superficie di un cerchio secondo i
            procedimenti già sufficientemente esposti. Attraverso questi
            esempi l’arte della trasformazione delle superfici l’una
            nell’altra è sufficientemente spiegata.

            [image: link to parallel text] 40. A ciò che l’arte delle trasformazioni esige
            come necessario si possono aggiungere molti altri punti [rimasti]
            finora nascosti, per esempio come fare a descrivere un angolo
            attorno al centro di un cerchio che si rapporta a due angoli doppi
            secondo il rapporto della doppia proporzionale[52], in base a quanto detto nella seconda premessa. Infatti,
            si può dare una linea retta che si rapporta a una data come il
            lato [del quadrato] alla diagonale[53]. Entrambi possono essere ridotti nell’arco della stessa
            circonferenza. Da lì, tracciati i raggi fino alle estremità degli
            archi, si formeranno attorno al centro necessariamente gli angoli
            secondo il rapporto degli archi.

            [image: link to parallel text] 41. Se, infatti, cerchi di risolvere una
            superficie in altre, tante quante ne vuoi, che non sono
            proporzionali tra di loro né alla superficie totale, ma sono
            tuttavia tali che se aggiungessi l’una all’altra, risulterebbe una
            parte aliquota della superficie totale, anche se la superficie
            data non fosse semicircolare, riducila in superficie semicircolare
            tracciando la corda dell’arco del quadrante, parallela al
            diametro, chiamato “medio divisore”[54](cfr. figura 7). Da questa [corda], su entrambe le parti,
            attraverso archi uguali, traccia, a tuo piacimento, corde
            [parallele] maggiori e minori. Tutte le porzioni[55] non saranno proporzionali né tra di loro né al tutto. Ma
            se unirai due porzioni aventi la stessa distanza dal “medio
            divisore”, esse formeranno una parte della superficie
            [semicircolare] uguale a quella dell’arco sulla circonferenza.
            Così facendo, potrai ricavare dalla metà della superficie del
            semicerchio qualsiasi parte aliquota tu vorrai. La dimostrazione
            di ciò sta nel fatto che i triangoli compresi tra i raggi e le
            corde parallele al medio divisore, la cui distanza dal medio
            divisore è data da archi uguali, sono necessariamente uguali, ed è
            massimo quel triangolo compreso tra i raggi e la corda che
            chiamiamo medio divisore. Puoi anche dividere la superficie in
            parti, in modo che, unendo l’una all’altra, la superficie formata
            da queste parti resti non proporzionale, come accade se tracciassi
            le corde dal medio divisore, attraverso archi non proporzionali
            alla circonferenza. E da qui potrai dedurre tutto il resto a tuo
            piacimento[56].
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Fig. 7

          
            La trasformazione dei solidi l’uno nell’altro – capitolo
            terzo

            [image: link to parallel text] 42. In ultimo luogo, resta da spiegare la
            trasformazione dei corpi con l’aiuto di esempi. D’altra parte, i
            solidi si trasformano in corpi in base alle proposizioni
            fondamentali esposte.

            [image: link to parallel text] 43. Un parallelepipedo [rettangolo][57] si riduce in un cubo in questo modo. Si quadra la sua
            base, se non è già quadrata, attraverso il medio proporzionale tra
            i suoi due lati diversi; tra questo lato [del quadrato] e
            l’altezza del corpo si costituiscono due linee in proporzione
            continua, secondo la terza premessa; e se l’altezza è maggiore del
            lato del quadrato, il medio minore è il lato della base del cubo
            cercato. Ma se il lato del quadrato è maggiore dell’altezza, il
            lato della base del cubo cercato è il medio[58] maggiore. Se è uguale, allora si ha il cubo. Se è un
            cilindro, si quadra la base e si procede secondo quanto finora
            stabilito.

            [image: link to parallel text] 44. Tuttavia, se vuoi trasformare un cubo in una
            sfera, riduci la superficie quadrata del cubo in un cerchio e fa’
            di questo il cerchio maggiore della sfera[59].

            [image: link to parallel text] 45. Se vuoi raggruppare più cubi in un unico
            cubo, posto che siano uguali, prendi come linea minore quella
            uguale al lato del cubo, e come linea maggiore quella uguale alla
            [somma di] tutti i lati [del cubo], segna quindi tra queste due
            linee due medi proporzionali secondo la terza premessa, poiché il
            minore tra questi due è il lato del quadrato, come abbiamo visto a
            proposito del parallelepipedo.

            [image: link to parallel text] 46. Se ti proponi di ridurre due [cubi] diversi
            in uno, riduci prima il più piccolo in un parallelepipedo
            rettangolo[60], la cui altezza[61] sia uguale al lato del cubo più grande, nel modo
            seguente: prendi il lato del più grande a cui aggiungi
            direttamente il lato del più piccolo cercando tra questi un solo
            medio proporzionale; trova un’altra linea in proporzione continua
            dopo il lato del più piccolo, cosicché siano quattro le linee in
            proporzione continua. Quest’ultima linea scoperta è il lato della
            base quadrata del parallelepipedo rettangolo la cui altezza è il
            lato del quadrato più grande, come risulta dal procedimento
            inverso di trasformazione del parallelepipedo. Fatta questa
            riduzione, cerca un quadrato uguale alla [somma di] due quadrati,
            ossia del quadrato del cubo più grande e della base quadrata del
            parallelepipedo rettangolo già menzionato, riducendo il cubo più
            grande e il parallelepipedo menzionato in un unico parallelepipedo
            rettangolo, il cui lato della base quadrata è maggiore
            dell’altezza. Riduci infine quest’ultimo a un cubo, seguendo la
            regola illustrata. Con questo metodo è evidente che si possono
            trasformare tutti i cubi che vuoi, siano essi uguali o diversi, in
            un cubo o infine in una sfera. E così facendo si possono ridurre
            più sfere in una sola, in un cubo o in un parallelepipedo
            rettangolo.

            [image: link to parallel text] 47. Ma se ti proponi di ridurre un
            parallelepipedo alto in uno più basso e/o viceversa, per prima
            cosa trasformalo in un cubo, poi traccia l’altezza [del nuovo
            solido] in cui ti proponi di trasformarlo. A questa aggiungi il
            lato del cubo cercando un solo medio proporzionale e una quarta
            linea in proporzione continua a queste tre. Questa quarta linea
            sarà [il lato] della base quadrata del parallelepipedo rettangolo
            avente l’altezza data[62].

            [image: link to parallel text] 48. Così, se di più parallelepipedi uguali o
            diversi vuoi costruire uno avente una data altezza, se essi sono
            uguali, prendi la base quadrata uguale a tutti e riducila in cubo
            e questo nel parallelepipedo avente l’altezza data secondo le
            modalità sopra esposte; se essi sono diversi, riduci a mente tutti
            i parallelepipedi in uno solo e questo in un cubo, e quest’ultimo
            in un parallelepipedo alto o basso, a tuo piacimento. Tuttavia, in
            ciò bisogna fare attenzione, poiché, se il cubo deve essere
            ridotto in un solido che ha come base un quadrato il cui lato è
            maggiore della sua altezza, allora [è necessario] unire
            all’altezza minore data il lato della base del cubo, cercando un
            solo medio proporzionale. A questo punto troverai una quarta
            linea, che si rapporta al medio come il lato del cubo si rapporta
            ‹all’altezza› [del solido cercato], e questa linea sarà il lato
            della base quadrata del solido, in cui volevi ridurre gli altri.
            Ma se vuoi che l’altezza di quel solido cercato sia maggiore del
            lato di base quadrata, aggiungi l’altezza direttamente al lato del
            cubo, e cerca il medio proporzionale: la quarta linea in
            proporzione continua dopo il lato del cubo è il lato cercato[63].

            [image: link to parallel text] 49. Se invece provi a trasformare una sfera in
            una piramide, fa’ che la base della piramide sia uguale alla
            superficie curva della sfera e che la sua altezza sia uguale al
            semidiametro della sfera[64].

            [image: link to parallel text] 50. Se qualcuno dicesse: date due sfere di cui
            una è doppia dell’altra, trasformale in un cilindro, tu fa’ che
            l’altezza del cilindro sia uguale al diametro della sfera
            ‹maggiore› e la base uguale al cerchio maggiore di questa sfera.
            Questo cilindro sarà uguale ad entrambe le sfere. Infatti, il
            cilindro la cui altezza è uguale al diametro della sfera e la cui
            base è uguale al cerchio massimo, è una volta e mezzo la
            sfera[65].

            [image: link to parallel text] 51. Questi e altri esempi, e tutto ciò che può
            avvenire nei solidi regolari mediante la trasformazione geometrica
            delle figure, puoi ricavarli da questi insegnamenti.

          
          
            ‹Appendice›
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Fig. 8
[image: link to parallel text] α[66] Ho descritto dunque un quadrante bc intorno al punto a,
            e, col piede del compasso fisso in c, ho
            tracciato il semicerchio ade
            (cfr. figura 8). Ho cercato in questo genere di triangoli il più
            piccolo e ho notato che, se si conduce una retta dal punto c al punto d, essa
            descrive un angolo tangente al quadrante, e di conseguenza il
            terzo lato che chiude questo triangolo sarà il più piccolo,
            essendo l’angolo a cui è sotteso, ossia quello di tangenza, il più
            piccolo. Tracciato quindi ab intorno al
            centro b, descrivo il quadrante occulto ad, uguale a bc.
            Dall’altra parte, tracciato cd intorno al
            centro d, indico con g il punto d’intersezione con il quadrante
            occulto ad. Poi, posto il piede del
            compasso fisso in g e l’altro in b, muovo b fino al punto
            d; l’arco descritto, ossia bd, avrà la stessa curvatura dell’arco del
            quadrante bc. Poiché tutte le rette
            condotte dal quadrante occulto al punto b
            sono uguali, è necessario descrivere archi della stessa curvatura
            o di cerchi eguali.

            [image: link to parallel text] β. bd sarà il lato curvo più piccolo e convesso;
            di conseguenza il triangolo BCD sarà il in questo genere di
            triangoli, contenendo il più piccolo degli angoli, ossia quello di
            tangenza, dato che il lato curvo bd al
            quale è sotteso è il più piccolo. E, poiché è il più piccolo, il
            lato curvo bc sarà il più grande. Infatti,
            non si può dare il lato bc come il più
            piccolo, perché, se così fosse, il lato dritto dc intersecherebbe il quadrante bc, e il triangolo che si ottiene non
            rientrerebbe nel genere di quelli cercati. Dunque BCD è un
            triangolo i cui due lati curvi sono bc e
            bd, e di questi uno è il più grande ed è
            concavo, l’altro è il più piccolo ed è convesso; questi lati curvi
            hanno la stessa curvatura, il cui diametro è il terzo lato dritto,
            ossia dc. E poiché in questo genere [di
            triangoli] non se ne può dare uno il cui lato più piccolo convesso
            sia bd, allora BCD sarà il triangolo più
            piccolo in questo genere di triangoli. Al contrario, poiché in
            questo genere di triangoli si possono dare triangoli più grandi,
            ossia quelli il cui lato curvo convesso è più grande dell’arco bd, si può dare correttamente il più grande,
            allorché il lato curvo e convesso sarà uguale a quello concavo,
            ossia quando è il più grande. Per descrivere tutto ciò, traccio
            una linea retta bd, e intorno al centro h descrivo hc e indico
            con m il punto d’intersezione di hc con il quadrante occulto. Al contrario,
            fissando il piede del compasso in m e
            l’altro in b, muovo b verso h: l’arco
            descritto, ossia bh, sarà uguale al
            quadrante bc. Infatti sono descritti con lo
            stesso diametro e le corde degli archi sono uguali; di conseguenza
            avranno la stessa curvatura. Da ciò risulta che il triangolo BHC –
            i cui due lati curvi hanno la stessa curvatura, ossia l’arco bc e l’arco bh, e il
            terzo lato dritto, ossia hc, è eguale al
            semidiametro dei cerchi degli archi – è il più grande in questo
            genere di triangoli; infatti, il lato più piccolo coincide con
            quello più grande. Al contrario, poiché nel triangolo più piccolo,
            ossia BCD, la linea condotta dalla metà del lato curvo alla metà
            dell’altro lato curvo è maggiore della metà del lato dritto,
            allora esso sarà in assoluto il più piccolo, dato che si tratta
            del triangolo più piccolo. E poiché la linea condotta dalla metà
            del lato curvo alla metà dell’altro lato curvo nel triangolo più
            grande, ossia CBH, è maggiore della metà del lato dritto (e questo
            perché i lati curvi sono uguali), la linea tracciata sarà in
            assoluto la più grande, trovandosi nel triangolo più grande. Da
            ciò consegue che nel triangolo intermedio ed equidistante dal
            massimo e dal minimo, in cui cioè il massimo e il minimo
            coincidono, la linea condotta dalla metà del lato curvo alla metà
            dell’altro lato curvo non è né maggiore né minore della metà del
            lato dritto, e, di conseguenza, questo triangolo intermedio sarà
            quello cercato.

            [image: link to parallel text] γ. Per
            ottenere ciò, divido l’arco dh in due parti
            uguali; indico con k il punto medio e
            traccio kc. Intorno al centro h descrivo kc e indico
            con i il punto d’intersezione di kc con il quadrante occulto. Posto il piede del
            compasso fisso in i e l’altro in b, muovo b verso k, e così sarà descritto l’arco bk, che, insieme all’arco del quadrante bc e alla linea kc,
            descrive il triangolo cercato. Infatti il lato più grande e curvo
            è il quadrante ed è concavo, ed esso, rispetto all’altro lato
            curvo e convesso, ossia bk, ha la stessa
            curvatura; mentre il terzo lato è dritto e eguale al semidiametro
            del cerchio degli archi.

            [image: link to parallel text] δ. Poiché,
            infatti, il triangolo più grande CBH si muove verso quello
            intermedio decrescendo di continuo, e il triangolo più piccolo BDC
            si muove verso quello intermedio crescendo di continuo, essi
            coincidono nel medesimo triangolo, che non può che essere BKC, che
            è quello cercato. Al contrario, si divida il lato curvo cb in due parti uguali con il punto medio in
            f e allo stesso modo si divida il lato
            curvo bk nel punto medio l. Sia kc di lunghezza
            indefinita e si conduca un’altra linea dal punto l passando per f. Poiché
            kc e fl non sono
            paralleli, convergono necessariamente in un punto, o, che sarà il punto d’intersezione delle linee
            kc e fl. Da ciò kc starà a fl come bl a bk o bf a bc.

            [image: link to parallel text] ε. Di tutte
            le linee che, condotte dal punto d’intersezione, tagliano i due
            lati curvi, quelle comprese tra questi conserveranno con il lato
            dritto lo stesso rapporto che le parti dei lati curvi verso
            l’angolo b hanno con i lati curvi. Come on, che passa per p, e
            bp sono due terzi di bc, allo stesso modo nb
            sarà due terzi di bk e np due terzi di kc. Al
            contrario nel caso di oq, che passa per r, rb è un terzo di bc e bq è un terzo di
            bk e allo stesso modo qr è un terzo di kc. E
            così, essendo il triangolo BKC equidistante da quello più grande,
            ossia BHC, e da quello più piccolo, ossia BDC, nei quali si
            realizzano il massimo e il minimo in assoluto (come si dice); di
            conseguenza, in quello intermedio non ci sarà né il più né il
            meno, dal momento che in esso coincidono il triangolo minimo e il
            triangolo massimo.

          
        Note a piè pagina
[1] Le trasformazioni geometriche e I complementi aritmetici sono dedicati a
              Toscanelli, cui Cusano riconosce la massima autorità
              scientifica. Sarà proprio Toscanelli a criticare aspramente il primo libro de I complementi matematici, e ciò spingerà il
              cardinale alla stesura del secondo libro de I
              complementi matematici. Cusano era stato presentato al
              medico e astronomo Toscanelli (cfr. Uzielli 1894) durante il periodo di studi a Padova e aveva
              ascoltato con lui le lezioni di Prosdocimo de’ Baldomandi (cfr. Favaro 1879). Tra loro nasce una sincera amicizia, testimoniata,
              per esempio, dal fatto che, nel 1443, Toscanelli aveva dato a Cusano, attraverso la penna del generale
              camaldolese Ambrogio Traversari, la traduzione della Theologia
              latina dello Pseudo–Aereopagita. Sarà lo stesso
              Toscanelli ad accompagnare Cusano nel suo ultimo viaggio da Roma
              a Todi (cfr. Stinger 1977, 42–44ss.).

            [2] Per «rectus» e «curvus» si intende una linea dritta e una
              linea curva.

            [3] Qui «ars», di lulliana memoria, sta per sapere, conoscenza,
              metodo.

            [4] Cfr. Cusanus 1972b, II, 2, 82.

            [5] Cfr. Cusanus 1972a, I, 3, 9; Cusanus 1982, 26, 79, 1–3; Cusanus 1988a, I, 15, 6–9.

            [6] Cfr. Cusanus 1972a, I, 4, 11.

            [7] Sebbene, qui come altrove, Cusano abbia in mente i poligoni
              regolari, di essi il cardinale considera solo l’uguaglianza dei
              lati, non anche quella degli angoli; cfr. Cusanus 2010i, 8, 8–11. La stessa restrizione si ritrova in Busard 1980, 1, 6. Bradwardine 1495a, II, 4, concl. 4 e 5 introduce il termine «isoperimetrico» nella
              conclusione 1; nella conclusione 2 richiama l’attenzione sul
              rapporto tra l’incremento della superficie e quello del numero
              di angoli di un poligono, e, nelle conclusioni 3 e 4, i poligoni
              sono pensati sempre come regolari. Stessa considerazione si
              trova in Cusanus 2010i, 8, 8–11. Cfr. Hofmann e Hofmann 1980, nota 4, 190–191.

            [8] Il termine «capacitas» è qui tradotto con ampiezza; per
              rispettare al meglio lo spirito del linguaggio cusaniano, a
              differenza sia di J. E. Hofmann che traduce «capacitas» con
              «Fläche» (cfr. Hofmann e Hofmann 1980, 54), sia di J.M. Nicolle che traduce il termine latino
              con «Surface» (cfr. Nicolle 1998, 7), si è preferito qui differenziare i due termini (capacitas e superficies), utilizzati entrambi da Cusano,
              rendendo il latino capacitas a volte con
              ampiezza, altre volte, a seconda del contesto, con estensione o
              superficie. In linea di massima sembra che Cusano utilizzi il
              termine capacitas per indicare l’ampiezza
              in generale, mentre fa uso del termine superficies quando intraprende costruzioni
              geometriche specifiche o discorsi che comportano una
              misurazione.

            [9] Cfr. Bradwardine 1495b, II, 5, concl. 5. Sul tema, cfr. Gericke 1982, 160–187; Di Meglio 2010, 15–21; Heath 1921, 2019–2111; Porter 1933.

            [10] Cfr. Cusanus 1972a, I, 3.

            [11] Qui si presuppone tacitamente la formula dell’area [image: f_n=\frac{(u\rho_n)}{2}],
              esplicitata più avanti.

            [12] La conclusione è che: a [image: f_n=\frac{(u\rho_n)}{2}] appartiene
              l’inscritto [image: \rho_n^2\pi] e al circoscritto [image: r_n^2\pi]. Poiché [image: f_n] si rapporta a
              [image: f=\frac{ur}{2}]
              non in una proporzione razionale, allora neanche [image: \rho_n^2\pi], o meglio
              [image: r_n^2\pi], a
              [image: r^2\pi].

            [13] Il termine «aequalis» indica un’uguaglianza in generale e
              Cusano lo utilizza sia nel caso di uguaglianze tra lunghezze
              (come in questo caso), sia per indicare un’uguaglianza tra aree,
              ossia un’equivalenza.

            [14] Cfr. Euclides 1883–1888, VI, 12.

            [15] Cfr. Clagett 1964–1984a, III, 19ss..

            [16] Cfr. Cusanus 2010c, 2–6.

              [17] Come in precedenza, Cusano utilizza «isopleur» come
                sinonimo di equilatero.

              [18] La stessa esposizione si trova in Cusanus 2010j, 3; Cusanus 2010i, 4–8.

              [19] Questo testo si ritrova, con piccole modifiche, in Cusanus 2010c, 2.

              [20] Cusano pone, senza dimostrazione, questa proposizione
                fondamentale che costituirà l’oggetto principale di tutte le
                successive discussioni. Egli pone un punto e tale che, se si fa passare per e un raggio ah che
                misura [image: \frac{5}{4}] di ae, si ottiene il raggio di un cerchio
                isoperimetrico al triangolo BCD. [image: ah=ae+\frac{1}{4}ae]. Ciò dà
                un’approssimazione di π uguale a [image: \frac{72}{(5\sqrt{21})}\cong3,1423].
                Secondo Hofmann, se si pone u come
                perimetro del triangolo, si ha [image: bc=\frac{u}{3}], [image: af=(\frac{u}{18})\sqrt{3}]; [image: fe=\frac{u}{12}];
                [image: ae=\frac{(u\sqrt{21})}{36}]; [image: ah=\frac{5}{4}ae].
                Questi valori sono ottenuti applicando il teorema di
                Pitagora al triangolo BCD. Di conseguenza, [image: ah=\frac{(5u\sqrt{21})}{144}]; poiché
                ah è posta come il semidiametro del
                cerchio isoperimetrico al triangolo BCD, si ha l’uguaglianza
                seguente: [image: u=2\pi                 ah], da ciò, [image: \pi=\frac{u}{(2ah)}] e, di conseguenza,
                [image: \pi=\frac{72}{(5\sqrt{21})}\cong3,1423],
                un valore compreso tra i limiti di Archimede [image: 3(\frac{10}{71})=3,1409] e [image: 3(\frac{1}{7})=3,1429].

              [21] Il termine latino è «portio», che, negli scritti
                matematici, Cusano utilizza per indicare sia porzioni di linea
                retta (segmenti) sia porzioni di linea curva (principalmente
                archi) sia porzioni di superficie (settori circolari o
                segmenti di cerchio).

              [22] Il ragionamento è il seguente: se [image: \frac{(ak–ai)}{ai}=\frac{if}{bc}],
                allora la linea è troppo piccola. Se [image: \frac{(am–al)}{al}=\frac{lf}{bc}], la
                linea è troppo grande. Esiste allora un punto compreso tra i e un ipotetico p
                tale che: [image: \frac{(ah–ap)}{ap}=\frac{pf}{bc}], dove
                ah è il semidiametro del cerchio
                isoperimetrico al triangolo. Come si legge in Hofmann e Hofmann 1980, nota 16, 192, se poniamo [image: af=\rho_3=\text{ raggio del cerchio                 inscritto}]; [image: a=r=\text{raggio isoperimetrico}] e
                [image: ab=r_3=\text{raggio del                 cerchio circoscritto al triangolo equilatero}], si ha
                che [image: ρ_3<r<r_3]. Di conseguenza si dà
                una posizione precisa di ah nel campo
                angolare fab tale che h viene a trovarsi fuori del triangolo
                rettangolo AFB e ah interseca il cateto
                fb in un punto e
                tra f e b. Ora
                e taglia il segmento ah in un rapporto, che Cusano identifica
                con un numero intero e che spera di individuare esaminando i
                valori intermedi. A questo scopo egli cerca il rapporto
                [image: \frac{eh}{ae}=\frac{ef}{bc}], che può
                essere preso come punto di partenza della riflessione. A
                questa relazione bisogna restar fedeli anche quando e è sostituito con un altro punto compreso
                tra f e b, per
                esempio con «i vicino a f» o con «l vicino a
                b», ma in questi casi non risulterà più
                il raggio isoperimetrico sul prolungamento del segmento, ma un
                segmento più piccolo vicino a f e più
                grande vicino a b. Cusano fissa la
                corretta posizione di e attraverso una
                costruzione intermedia.

              [23] Cfr. Cusanus 2010c, 24. Qui Hofmann introduce nel testo della sua
                traduzione un simbolismo che tuttavia, come nota Nicolle 2007, nota 7, 15, è estraneo ai matematici dell’epoca. Non soltanto
                Cusano redige letteralmente i rapporti proporzionali, ma
                ignora la scrittura esponenziale del quadrato. Cusano fa il
                medesimo ragionamento sul lato di b e
                non più su quello di f: se [image: \frac{(an–ai)}{ai}=\frac{ib}{bc}],
                allora la linea è troppo piccola; se [image: \frac{(ao–al)}{al}=\frac{lb}{bc}],
                allora la linea è troppo grande. Esiste allora un punto
                compreso tra i e l ([image: p']) tale che: [image: \frac{(ah–ap')}{ap'}=\frac{p'b}{bc}].
                E’ “evidente” che [image: p=p'] perché non c’è che un cerchio
                isoperimetrico al triangolo BCD. Si ha
                dunque: [image: \frac{(ah–ap)}{ap}=\frac{pf}{bc}=\frac{pb}{bc}],
                e di conseguenza p non può essere che
                il punto e. In questo caso si ha
                [image: \frac{(ah–ae)}{ae}=\frac{eh}{ae}=\frac{ef}{bc}=\frac{eb}{bc}=\frac{1}{4}];
                [image: ah-ae=\frac{1}{4}ae] e si ottiene
                [image: ah=ae+\frac{1}{4}                 ae=\frac{5}{4}ae].

              [24] Cusano fa lo stesso ragionamento con i quadrati. Se
                [image: \frac{(ao–al)}{al}=\frac{lf}{bc}=\frac{lb}{bc}=\frac{lf^2}{bf^2}],
                allora la linea è troppo grande. Se [image: \frac{(ak–al)}{al}=\frac{lf}{bc}=\frac{lb}{bc}=\frac{lf^2}{bf^2}],
                allora la linea è troppo piccola. Si cerca dunque un punto e tale che [image: \frac{eh}{ae}=\frac{eb}{bc}=\frac{ef}{bc}=\frac{ef^2}{bf^2}=\frac{1}{4}].

              [25] Cusano passa dal triangolo equilatero a un poligono
                regolare isoperimetrico e afferma che [image: \frac{eh}{ae}] decresce con l’aumentare
                del numero degli angoli. Per il suo svolgimento, cfr. Hofmann e Hofmann 1980, nota 19, 193.

              [26] Cfr. Cusanus 2010b, 6, 2–3.

              [27] Per «trigonum rectilineum» si intende un triangolo
                delimitato da linee (lati) dritte.

              [28] La difficoltà a comprendere questo passaggio deriva dalla
                diversa prospettiva tra la descrizione di Cusano e ciò che noi
                oggi chiamiamo curva concava o convessa. Noi intendiamo per
                curva concava quella che presenta una superficie incavata e
                convessa quella che è arrotondata all’esterno, situandoci
                all’interno della figura. Ora Cusano descrive queste curve
                dall’esterno delle figure. Come riporta Nicolle 2007, nota 9, 16, si ha:

                [image: ]
La traduzione matematica di questa relazione è ben svolta
                da Hofmann e Hofmann 1980, nota 22, 194, che però mostra come Cusano dimostri questa
                proporzione solo nel caso di semiarchi.

              [29] Cusano parla di «semicirculus occultus» e, qualche riga
                sotto, di «arcus occultus». È un termine di difficile
                traduzione, che non ci risulta utilizzata dai matematici del
                tempo. Essa invece si trova negli scritti matematici di fine
                Cinquecento e Seicento, per esempio in Christopher
                Clavius (Gnonomices octo libri 1588,
                libro VIII, cap. III), in Jean Voel (De horologiis sciothericis libri
                tres 1608, libro I), nel cap. XXXVII del De Usus et fabrica circini cuiusdam
                proportionis 1607 (traduzione latina ad opera di
                Baldassare Capra de Le operazioni del compasso
                geometrico et militare di Galileo (il termine „occulto“ si trova all’interno
                dell’operazione XXVI) (Padova, 1606); nel terzo Dialogo de il
                Dialogo sopra i due massimi sistemi di
                Galileo Galileo (1632).

              [30] Cfr. Bradwardine 1495b, III, 4, concl. 4 e Da Novara 2005, VI, 9. È necessario prendere il concetto di freccia nel
                senso più ordinario di retta perpendicolare al centro della
                corda dell’arco. Luca Pacioli la definisce così: «Si chiama freccia questa linea
                retta che parte dal punto mediano dell’arco di qualche
                porzione di cerchio per cadere in squadra nel mezzo della sua
                corda. Essa è detta freccia in relazione con la parte della
                circonferenza che si chiama arco, per somiglianza con l’arco
                materiale per il quale sono anch’esso usuali questi tre
                termini: corda, arco e freccia» (Pacioli 1509, 134).

              [31] La «regula» consiste nel condurre una linea perpendicolare
                al lato.

              [32] Questa pagina si ispira a Eutocius da Ascalona (ca. 480–ca. 540), matematico bizantino, autore
                (circa sette secoli dopo Archimede), del Commento della sfera e del
                cilindro di Archimede, tradotto da Guglielmo di Moerbeke, o Willem van
                Moerbeke (ca. 1215–ca. 1286). Cfr. Clagett 1964–1984a, II, 238. Secondo Clagett 1964–1984a, III, 299–301 Cusano avrebbe letto questo passaggio nel De arte mensurandi di Johannes De
                Muris (cfr. De Muris 1998, VII, 16).

              [33] Si tratta di determinare d dalla
                proporzione continua [image: \frac{a}{b}=\frac{b}{c}=\frac{c}{d}];
                c è la terza proporzionale tra a e b; d è la terza proporzionale a b e c. Cfr. Da Novara 2005, VI, 10.

              [34] Il termine latino è «corpus».

              [35] Cfr. Cusanus 2010i, 31; Cusanus 2010d, 19.

              [36] Cfr. Cusanus 2010d, 19.

              [37] Cfr. Cusanus 2010e, 6; Cusanus 2010d, 19; Cusanus 2010k, 5.

              [38] «Curva» indica qui una curva circolare, poiché la
                trasformazione si può realizzare solo su una curva regolare
                come la circonferenza di un cerchio.

              [39] Cfr. Cusanus 2010i, 32; Cusanus 2010e, 3; Cusanus 2010d, 18; Cusanus 2010k, 5.

              [40] Per «aliquota» s’intende: contenuta un numero intero di
                volte, ossia un sottomultiplo intero. Cfr. Bradwardine 1328, 68: «pars autem aliquota est illa quae, aliquotiens
                sumpta, reddit aequaliter summum suum. Pars vero non aliquota
                est illa quae nullatenus, aliquotiens sumpta, reddit
                aequaliter summum suum» («Una parte aliquota è invero quella
                che, presa un determinato numero di volte, dà come risultato
                il suo tutto. Una parte non aliquota è quella che, presa un
                qualsiasi numero di volte, non dà come risultato il suo
                tutto»). La citazione si trova anche in Clagett 1964–1984a, 493.

              [41] Si deve determinare anche l’angolo (il radiante [image: \phi]) di ciascun arco
                di circonferenza dal semidiametro ab,
                che sia uguale al segmento ed ([image: =ab\times\phi]).
                Mediante la costruzione sul triangolo risulta che [image: ed=dg\times\frac{\pi}{2}]; e così è
                applicabile [image: \phi:\frac{\pi}{2}=dg: ab] e la
                costruzione della seconda premessa. Secondo Hofmann sulla
                figura originale del manoscritto bf non
                è uguale a ab, come invece dovrebbe
                essere (Hofmann e Hofmann 1980, nota 34, 195).

              [42] Cfr. Cusanus 2010d, 21; Cusanus 2010k, 5.

              [43] Per «superficies rectilinea» si intende una superficie
                delimitata da linee dritte. Cfr. Da Novara 2005, VI, 25 e Bradwardine 1495b, III, 6, concl. 4: «E’ possibile ridurre ogni poligono in quadrato
                attraverso la risoluzione in triangoli, attraverso le
                quadrature di questi triangoli e attraverso circoscrizioni
                gnomoniche».

              [44] Con rettangolo si traduce «quadrangulus». In questo, come
                negli altri scritti matematici, il termine «figura
                quadrangularis» è equivoco: Cusano lo riferisce tanto al
                quadrato quanto al rettangolo e al parallelogramma. Di volta
                in volta, a seconda del contesto, si renderà il termine
                «quadrangularis» con la figura corrispondente. Sull’utilizzo,
                da parte di Cusano, del termine «quadrangulus» e
                sull’influenza dalla terminologia matematica medioevale, cfr.
                Hofmann 1966, 98–136, spec. 105. Cfr. anche Cusanus 2010j, 2.

              [45] Cfr. Archimedes 1910a, prop. 1, ripreso da Bradwardine 1495b, III, 6, concl. 5.

              [46] La formula dell’area [image: f_n=\frac{u\rho_n}{2}], già utilizzata
                nell’introduzione, compare nell’esempio dell’ottagono nel Circ. dem., di Archimede, è ripresa da Bradwardine 1495b, II, 5, concl. 2 ed è menzionata in Cusanus 2010i, 10 per dimostrare il quadrato. La formula dell’area del
                cerchio è espressa in Bradwardine 1495b, III, 6, concl. 5, ma senza riferimenti al processo dimostrativo
                archimedeo.

                Cfr. Cusanus 2010l, 10.

              [47] Cfr. Cusanus 2010i, 34.

              [48] Secondo Clagett 1968, II, 302–304, Cusano ha compreso male la dimostrazione indiretta
                di Archimede «.. e inversamente…»: questa idea di operazione
                inversa gli venne dal De arte
                mensurandi (cap. 8, prop. 15) di Johannes De Muris (De Muris 1998).

              [49] Nel Medioevo le figure geometriche sono viste non come
                rette che delimitano delle superfici, ma come superfici
                delimitate dalle rette. Cusano vede l’angolo come una
                superficie e i settori come porzioni di superficie del cerchio
                delimitate da raggi (cfr. Nicolle 1998, nota 19, 17). Troviamo la seguente definizione in Proclo: «la natura particolare dell’angolo non consiste in
                una contrazione di superficie o del solido, ma in una
                superficie contratta in un punto e compresa tra due linee
                spezzate» (Proclus 1873, 117, 73).

              [50] Cfr. Cusanus 2010i, 28.

              [51] Cfr. Cusanus 2010i, 29, 4–5.

              [52] «Secundum proportionem medietatis duplae»: si tratta di
                un’espressione idiomatica intraducibile in sè, utilizzata
                anche ne La quadratura del cerchio
                (Cusanus 2010j, 9, 8) e ne I complementi
                matematici (Cusanus 2010i, 36). Considerando l’angolo come una superficie, Cusano
                ritiene il rapporto tra angoli uguale al rapporto degli archi
                corrispondenti allo stesso cerchio (cfr. Hofmann e Hofmann 1980, nota 42, 195–196). Vescovini 1972, nota10 sottolinea che l'espressione medietatas duplae
                rimanda alla tradizione matematica medievale con cui Cusano
                allude alla dimostrazione dell’irrazionalità della [image: \sqrt{2}], spesso citata
                in Aristotele e menzionata anche in Oresme 1966, 160 e in Bradwardine 1495b, III–1. Oresme chiama il rapporto [image: \frac{a^2}{b^2}] la metà di [image: \frac{a}{b}] (cfr. Oresme 1966, 454). La proportio proportionum,
                cioè la proporzione tra due rapporti [image: \frac{\sqrt{a}}{\sqrt{b}}] e [image: \frac{a}{b}] è espressa
                dal rapporto [image: \frac{1}{2}]. Se la proportio dupla è il quadrato allora, la
                metà, ossia la medietas duplae, è la
                radice. Cusano si riferisce a questa terminologia matematica
                di Bradwardine, di Oresme e di altri studiosi interessati agli
                incommensurabili e ai rapporti irrazionali. Cfr. Rommevaux 2003, 401–418; Pedersen 1953, 134ss.. Questa espressione è legata al problema della
                duplicazione del cubo e alla relativa doppia media
                proporzionale. Secondo la leggenda l’oracolo di Delo aveva
                vaticinato che per far cessare una terribile pestilenza si
                doveva dedicare alla divinità un’ara cubica di volume doppio
                rispetto all’ara cubica dedicata in precedenza. Un problema
                semplice solo in apparenza. Era noto che, raddoppiando la
                misura degli spigoli del cubo, il volume aumenta [image: 2^3=8\text{volte}]. Il
                problema consisteva, quindi, dato un cubo di spigolo a, nel trovare un cubo di spigolo x tale
                che [image: x^3=2a^3],
                ossia nel trovare due numeri tali che la terza potenza di uno
                sia il doppio della terza potenza dell’altro. Ippocrate di
                Chio (ca.470a.C.–ca.410a.C.) aveva proposto una via di
                risoluzione riducendo il problema di Delo all’altrettanto
                difficile problema delle due medie proporzionali, nel senso
                che la soluzione del secondo equivale alla soluzione del
                primo. ‘Due medie’ perché se tra i segmenti a e b riusciamo a
                inserire due segmenti x e y tali che [image: a: x=x: y=y: b], allora abbiamo trovato
                il valore di x che risolve il problema
                cioè, come diciamo oggi, che soddisfa l’equazione di terzo
                grado [image: x^3=2a^3]. La riduzione di
                Ippocrate alle ‘due medie’ è corretta, infatti dalle due
                proporzioni si ricava x e y ossia: [image: x^2=ay] [image: y^2=bx] da cui elevando al quadrato
                [image: x^4=a^2y^2],
                sostituendo [image: x^4=a^2bx] cioè [image: x^3=a^2b] e ponendo [image: b=2a], si ottiene
                l’equazione cercata [image: x^3=2a^3]. È Eutocio che, nel suo Commento alle Sfera
                e Cilindro di Aristotele (Libro II), riporta la lettera di Eratostene a re
                Tolomeo, raccontando, vera o presunta che sia, la nascita del
                problema del raddoppiamento del cubo. Sul tema, cfr. Gamba e Montebelli 1988, 166ss; Maracchia 2017, II, 24ss.. Fatto questo, rimane il problema di determinare x e y. Ragionando
                nei termini della geometria analitica nata con Cartesio, le
                relazioni [image: x^2=ay] e [image: y^2=bx] sono le equazioni di due
                parabole entrambe passanti per l’origine degli assi
                cartesiani, una simmetrica all’asse x,
                l’altra all’asse y. Oltre che a
                intersecarsi nell’origine, le due parabole si intersecano in
                un punto P di coordinate (x , y), e la coordinata x risolve il problema di Delo.

              [53] Cusano utilizza il termine «diameter» per indicare la
                diagonale, in base a una etimologia inesatta da «δύο» e
                «μετρεĩν» (che divide in due)
                ripresa da Bradwardine (Bradwardine 1495b, II, 1, concl. 8: «linea diagonalis quae ducitur ab angulo ad angulum
                […]in quadrato vocatur diameter»). Cfr. Da Novara 2005, X, 7, add.; Bradwardine 1495b, III, 4, concl. 3. Una fonte chiara è Pisanus 1862, 2. Alla fine del Quattrocento si trova ancora il
                termine diametro per designare la diagonale del quadrato
                nell’opera di Luca Pacioli: «Si ha costume di parlare di diametro anche per i
                quadrati: ecco (è) perché, al fine di evitare qualunque
                equivoco, si dice diametro del cerchio e diametro del quadrato
                per differenziarli» (Pacioli 1509, I, 71, 133). Sul tema, cfr. Giusti e Maccagni 1994.

              [54] Il termine latino è «medium divisionis».

              [55] Qui per porzione s’intende un segmento circolare.

              [56] Questa uguaglianza tra la porzione del cerchio e la sezione
                della circonferenza è ripresa da Di San Vincenzio 1647, X, 20, il quale verosimilmente aveva preso Cusano come
                modello. Per una chiara illustrazione del ragionamento
                cusaniano, cfr. Hofmann e Hofmann 1980, nota 43, 196.

              [57] Cusano usa l’espressione «columna quadrangula» o anche
                (alla fine del §46) «corpus altera parte longius» per indicare
                il parallelepipedo; più avanti (§ 50) Cusano indica il
                cilindro con l’espressione «columna rotunda». Anche in questa
                proporzione Cusano si ispira al De arte
                mensurandi di De Muris.

              [58] Se a è il lato della base quadrata,
                h l’altezza (Cusano usa longitudo) del parallelepipedo dato, e c lo spigolo del cubo cercato, si ha:
                [image: a^2h=c^3].
                Questo risulta aggiungendo due rette intermedie x e y tali che
                [image: \frac{a}{x}=\frac{x}{y}=\frac{y}{h}];
                se [image: h>a]
                allora c è la minore delle due rette.
                Se [image: a>h]
                allora c è la maggiore. Se [image: h=a] allora [image: c=h=a].

              [59] Se c è lo spigolo del cubo e r il raggio della sfera, Cusano afferma a
                torto che [image: c^2=\pi                 r^2]. Come riporta Nicolle 1998, nota 24, 17, Hofmann e Clagett segnalano qui un errore di
                comprensione del testo di Archimede da parte di Cusano. In una lunga annotatio di Omnisanctus indica lo stesso errore in una Geometria vulgaris di quel tempo, da
                un’altra annotatio all’ultimo passaggio
                del 3 capitolo risulta che si tratta della geometria di Ch.
                Bouvelles, in cui compare tra gli altri lo stessa formula
                sbagliata ([image: \pi                 r^2]) per la superficie della sfera. Cfr. Klibansky 1980, 358–362.

              [60] Cusano utilizza la perifrasi «corpus altera parte longius»
                per indicare il parallepipedo rettangolo.

              [61] La lunghezza, cioè l’altezza della colonna.

              [62] Si cerca la trasformazione di un parallelepipedo di
                superficie  quadrata [image: a^2b] in un altro
                [image: x^2c] di
                altezza data. Cusano costruisce non direttamente, ma
                indirettamente, ciò che facilmente sarebbe possibile da
                [image: \frac{x}{a}=\frac{\sqrt{b}}{c}=\frac{b}{\sqrt{bc}}]:
                determina t da [image: t^3=a^2b], pone poi [image: tc=y^2] e conclude
                [image: c:y=t:x]. In
                realtà [image: cx^2=\frac{(y^2t^2)}{c}=t^3=a^2b],
                c.v.d. Cfr. Hofmann e Hofmann 1980, nota 49, 197.

              [63] Se [image: t^3=x^2c]
                allora, per quanto detto nella nota precedente, si ha [image: tc=y^2] e [image: c: y=t: x]. Ora Cusano
                distingue due casi: [image: c<t] (e dunque [image: x>c]) e [image: c>t] (e dunque
                [image: x<c]).
                Questo passaggio è oscuro e l’edizione di Omnisanctus presenta grandi differenze con il manoscritto. A
                quanto pare Cusano vuole costruire nel caso [image: c<t] da [image: y: t=t: x] e nel caso
                [image: c>t] da
                [image: c: y=t: x], ma
                non si capisce chiaramente il perché.

              [64] Cfr. Archimedes 1910a, I, 33, letto attraverso il De arte
                mensurandi di De Muris o il De curvis superficiebus
                archimenidis di Johannes De Tinemue (cfr. Clagett 1964–1984a, I, 496–500 e 502–504).

              [65] Da queste righe risulta che Cusano conoscesse la formula
                corretta del volume della sfera. Se a è
                il raggio della sfera maggiore, allora il suo volume è
                [image: 4a^3\frac{\pi}{3}] e quello della sfera
                minore [image: 2a^3\frac{\pi}{3}]; entrambi danno
                [image: 2a^3\pi=a^2\pi\times2a]. Che il volume
                del cilindro circoscritto si rapporti a quello della sfera
                come [image: 3:2], è
                detto nella Prefazione del primo libro di Archimede, Sulla sfera e sul cerchio
                (cfr. Archimedes 1910a, I, 34).

                Cfr. De Tinemue 1964, prop. 8, 496–500.

              [66] Questo testo si trova in b e p, tra i capitoli 20 e 21. Essa non è
                presente nelle traduzioni di Hofmann e Nicole.

              
  I complementi aritmetici

          [image: link to parallel text] 1. Al fisico Paolo, uomo eccellente e dottissimo, i
          complementi aritmetici del cardinale Niccolò da Cusa[1].

          Carissimo Paolo, ho sottoposto a te, che sei instancabile, alcuni
          complementi sui rapporti aritmetici, affinché tu li corregga,
          sebbene a te e a tutti possano essere appresi da quanto ho spiegato
          nel trattato su Le trasformazioni
          geometriche. Allora, io sostengo che la coincidenza dell’angolo
          e del lato nei diversi poligoni isoperimetrici ci porta al cerchio
          isoperimetrico come abbiamo dimostrato nella prima premessa de Le trasformazioni geometriche[2]. Da ciò si apre a noi una via per calcolare in ogni modo
          possibile tutto ciò che riguarda un complemento di aritmetica.
          D’altra parte, ciò che affermo, cioè il rapporto tra corda e arco, è
          rimasto fondamentalmente sconosciuto fino a questo momento. Nella
          scoperta [di tale rapporto] consiste quel complemento, e, una volta
          fatta, non resterà nulla di difficile da calcolare
          numericamente.

          [image: link to parallel text] 2. Ci sono stati uomini di grande ingegno, primo
          fra tutti Archimede[3], i quali hanno dimostrato che la circonferenza del cerchio
          rispetto al suo diametro è maggiore di tre più dieci settantunesimi
          e minore di tre più dieci settantesimi[4] e che si poteva rendere sempre più precisa questa
          approssimazione. Ma non ci hanno tramandato dietro quale numero[5] si celasse l’esatto valore, allora inaccessibile. Infatti,
          sebbene non si possa calcolare numericamente la misura del lato a
          partire dalla misura della diagonale[6] del quadrato, si potrebbe, tuttavia, ottenere questo
          numero se fosse possibile calcolarne la radice; così facendo
          conosciamo il lato incalcolabile. Non ho trovato che gli antichi
          fossero a conoscenza o per lo meno ci abbiano trasmesso qualcosa di
          simile.

          [image: link to parallel text] 3. Se davvero tale rapporto possa essere
          conosciuto[7] ritengo che l’arte [matematica] possa scoprirlo da quanto
          ho già detto, e, per essere breve, tralascio l’ultima figura che lì
          ho posto[8](cfr. figura 1).

          [image: ]
Fig. 1
È evidente che il rapporto tra il lato dell’esagono e il
          semidiametro del cerchio circoscritto al triangolo isoperimetrico è
          noto mediante i quadrati, poiché, se il quadrato di dg è 4, allora il quadrato del lato dell’esagono
          isoperimetrico è 3, dato che il lato dell’esagono è uguale alla metà
          della corda sottesa alla terza parte della circonferenza dello
          stesso cerchio. È noto, di conseguenza, il quadrato di ed, poiché, se il quadrato di dg è 4, il quadrato di ed
          è 9, essendo dg il doppio di ge. Così sarà noto anche fe, dal momento che esso è un lato dell’esagono
          il cui quadrato sta a 3 come il quadrato di dg sta 4; allo stesso modo sarà pertanto noto ec. Le linee ed e ef saranno così note[9]; e poiché i triangoli EGL e ECN sono equiangoli, i loro
          lati hanno la stessa proporzionalità[10]; dunque ge sta a el come ce sta a en[11] (cfr. figura 2).

          [image: ]
Fig. 2
[image: link to parallel text] 4. Dobbiamo quindi trovare due grandezze di cui la
          maggiore stia a eg come la minore a ec e, precisamente, in modo tale che, se si
          sottraggono la maggiore da ed e la minore da
          ef, le parti restanti siano uguali. Questa
          parte restante è il semidiametro del cerchio isoperimetrico a un
          poligono esagonale o a un poligono con tre lati, entrambi
          isoperimetrici[12]. Ora, poiché il rapporto tra il perimetro del poligono e
          de è noto e il rapporto tra il semidiametro
          del cerchio isoperimetrico e de è noto,
          allora si potrà conoscere il rapporto tra il diametro e la
          circonferenza nel modo in cui è possibile conoscere. E cosi saprai
          che il numero non può cogliere ciò che cerchi, qualsiasi cosa esso
          sia, sicché l’intelletto comprenda l’ignoranza e il limite della
          ragione calcolante.

          [image: link to parallel text] 5. Risulta chiaro, da quanto detto, che è possibile
          cercare il rapporto tra una qualsiasi corda e l’arco e il diametro.
          Infatti, se al posto di un esagono si mette un qualsiasi poligono, è
          evidente che è possibile ricavare tutto ciò che si ricava
          nell’esagono. Per capirlo, descriviamo un semicerchio il cui
          semidiametro sia uguale al semidiametro del cerchio circoscritto al
          triangolo; traccia il semidiametro dg dal
          centro g alla metà dell’arco, e indica
          sull’arco che si estende da d [verso destra e
          verso sinistra] l’arco che corrisponde ai lati del poligono che sono
          le corde che dobbiamo cercare (cfr. figura 3). Posto che tu
          voglia una corda [che formi con l'arco di circonferenza] un angolo
          di 45 gradi, segnerai l’arco avente l’angolo di 22 gradi e mezzo.
          Partendo dal punto d e indicando i punti con
          s e t, traccia la
          semicorda da s verso t
          che s’interseca con il semidiametro dg nel
          punto v; poiché 45 gradi sono un ottavo della
          circonferenza, quel poligono avrà altrettanti angoli e lati.
          Traccia, quindi, la linea che va dal centro g
          al punto s, dividi la linea corrispondente al
          perimetro del triangolo in otto parti e fai cadere la metà di una
          parte parallelamente a sv, tra gs e gd, e sia questa xy. Descrivi, poi, un arco al di sopra di g con semidiametro xg fino
          a tagliare dg, nel punto z.

          [image: ]
Fig. 3
[image: link to parallel text] 6. Successivamente, descrivi due quadranti, come ho
          appena fatto, disegnando precisamente il semidiametro ed uguale al semidiametro del cerchio
          circoscritto al triangolo e all’eccesso di questo semidiametro
          rispetto al semidiametro del cerchio inscritto allo stesso
          triangolo; segna con ef il semidiametro del
          secondo quadrante uguale alla linea gx o gz, più zy che è la linea
          del semidiametro del cerchio circoscritto all’ottagono
          isoperimetrico che eccede il semidiametro del cerchio inscritto allo
          stesso ottagono. Traccia la corda gh in modo
          che la freccia gd sia uguale al semidiametro
          del cerchio circoscritto al triangolo e un’altra corda ck in modo che fc sia
          uguale xg, cioè, il semidiametro del cerchio
          circoscritto all’ottagono[13].

          [image: link to parallel text] 7. Traccia, quindi, la linea da e fino a tagliare le circonferenze, i cui
          segmenti compresi tra l’arco e le sue corde siano uguali, come ho
          detto, e siano segnate nei punti di intersezione, come in
          precedenza, con lm e no. Da qui cerca di conoscere ef; ed è noto, come detto
          prima. Anche lm, che è uguale a no, è noto. Anche el ed
          eg sono note e perciò è noto anche il
          rapporto tra el e eg e
          tra en e ec. Essendo
          no noto, cerchiamo la linea en, supponendo che sia una lunghezza qualsiasi.
          Stando a questa ipotesi, secondo il rapporto noto, anche la
          lunghezza ec sarà necessariamente nota. E se
          [la misura de]la lunghezza en, che ho
          ipotizzato, è giusta, allora esamino ef. Da
          quanto ipotizzato, eo sarà noto e anche cf. Si sottrae dal quadrato di cf o gx il quadrato di xy, che è noto, e la radice della parte restante
          sarà gy. Così sarà noto zy, e, se esso è uguale a ec, vuol dire che l’ipotesi era corretta,
          altrimenti si corregge l’errore, e si ricava ciò che si cerca[14].

          [image: link to parallel text] 8. In questo modo saranno note tutte le corde che
          gli antichi, nonostante il massimo impegno, non sono riusciti a
          trovare[15]. Come sai, tutti ammettono di non essere riusciti a
          indicare fino a questo momento il valore preciso delle corde di un
          grado, due, quattro, otto, ecc. Grazie allo studio del rapporto tra
          gli archi e le corde si potrà determinare il rapporto dei lati e
          degli angoli anche di un triangolo sconosciuto e, per mezzo di tali
          complementi, scoprire tutto quanto è possibile sapere[16].

          [image: link to parallel text] 9. Riprendendo la figura del triangolo nella prima
          ipotesi, descrivo intorno al centro a un
          altro cerchio, il cui semidiametro sia uguale al semidiametro del
          cerchio circoscritto all’esagono isoperimetrico più l’eccesso con
          cui supera il semidiametro del cerchio inscritto allo stesso esagono
          (cfr. figura 4). Traccia i diametri che si tagliano ad angolo retto
          al centro e indica i punti d’intersezione [con la circonferenza] con
          b, c, d, e; traccia la corda, segnata con fgh, la cui freccia è uguale il semidiametro del
          cerchio circoscritto all’esagono. Traccia, poi, la linea aik che passa per il punto a e per la linea gh in
          modo da ottenere il semidiametro del cerchio circoscritto
          all’esagono isoperimetrico.

          [image: ]
Fig. 4
Segna, quindi, l’eccesso di cb della prima
          figura su ab della seconda, indicala sulla
          linea tracciata per a – e sia questa la –, traccia la linea perpendicolare da l ad ad, e indica con m il punto di contatto [con ad] . Essendo cb noto, per
          la posizione del lato del triangolo inscritto nel cerchio, allo
          stesso modo è noto ab; e lo saranno anche la e ag. Inoltre, la sta ad am come ai ad ag e, allo stesso
          modo, la sta ad ai
          come ma a ag. Si
          trovi, quindi, un numero che si rapporti in qualche modo a la (noto) in modo che un altro numero stia nello
          stesso rapporto a ag (noto). In questo modo,
          aggiungendo la a questo numero trovato e
          sottraendo questa somma da bc, si otterrà lo
          stesso resto di quello che si ottiene sottraendo da ab ag aggiunto all’altro numero; con ciò hai
          calcolato il semidiametro del cerchio. Dunque, una volta considerato
          il rapporto del triplo del lato del triangolo e del doppio del
          semidiametro, arriverai così, con una leggera approssimazione, al
          rapporto tra il diametro e la circonferenza[17].

        Note a piè pagina
[1] I complementi
              aritmetici non sono un testo di aritmetica, come il titolo
              suggerirebbe, ma un breve trattato di geometria nel quale Cusano
              cerca un’approssimazione di [image: \pi]. Il termine aritmetico sta a
              indicare la ricerca di un numero (costante) che permetta di
              calcolare il rapporto tra il diametro di un cerchio e la
              circonferenza. Non c’è nessun riferimento alla coincidentia oppositorum, nessuna allusione
              al massimo e al minimo, nessun utilizzo del metodo indiretto
              impiegato negli scritti successivi. Si tratta di un testo
              semplicemente matematico e, se si mette da parte un cenno
              all’ignoranza della ragione osservata dall’intelletto (fine §
              4), il testo non presenta alcuna considerazione metafisica.

            [2] Cfr. Cusanus 2010b, 7.

            [3] È il primo riferimento esplicito ad Archimede da parte di Cusano.

            [4] Tradotto numericamente: [image: 3+\frac{10}{71}<\pi<3+\frac{10}{70}],
              dove [image: \pi=\frac{C}{d}]. Cfr. Archimedes 1910b, prop. 3.

            [5] All’epoca per «numerus» s’intendevano i numeri interi o
              talvolta quelli razionali. Su questo punto Cusano si ispira a
              Bradwardine 1495b, III, 4, concl. 1. L’approssimazione di Archimede si trova in Archimedes 1910a, prop. 3, di cui Cusano era a conoscenza grazie al De arte mensurandi di de Muris (1998, prop. 8).

            [6] Cusano utilizza il termine «diameter» per indicare la
              diagonale, in base a una etimologia inesatta da «δύο» e
              «μετρεĩν» (che divide in due)
              ripresa da Bradwardine (Bradwardine 1495b, II, 1, concl. 8: «linea diagonalis quae ducitur ab angulo ad angulum
              […]in quadrato vocatur diameter»). Una fonte chiara è Pisanus 1862, 2. Alla fine del Quattrocento si trova ancora il termine
              diametro per designare la diagonale del quadrato nell’opera di
              Luca Pacioli: «Si ha costume di parlare di diametro anche per i
              quadrati: ecco (è) perché, al fine di evitare qualunque
              equivoco, si dice diametro del cerchio e diametro del quadrato
              per differenziarli» (Pacioli 1509, I, 133). Cfr. Da Novara 2005, X, 7, add.; Bradwardine 1495b, III, 4, concl. 3. Sul tema, cfr. Giusti e Maccagni 1994.

            [7] Per «conosciuto» s’intende espresso numericamente.

            [8] La fig. 1 risulta dal trasferimento su un quadrante di due
              altre figure. Il seno ef del cerchio
              grande di sinistra (che è anche il semilato del triangolo
              inscritto) diventa il raggio cf del
              cerchio di destra, circoscritto all’esagono. A sinistra,
              [image: dg(r_3)] è il
              raggio del cerchio circoscritto al triangolo; [image: ge(\rho_3)] è il raggio
              del cerchio inscritto al triangolo; [image: ef(\frac{s_3}{2})] è un semilato del
              triangolo. Nella seconda figura [image: cf(r_6)] è il raggio del cerchio
              circoscritto all’esagono; [image: ef(\rho_6)] è il raggio del cerchio
              inscritto all’esagono; ce è la differenza
              dei due raggi [image: (r_6–\rho_6)]. Nella figura 2 questi
              elementi diversi sono riportati sul lato del quadrante. Qui
              Cusano inverte c ed e.

            [9] [image: eg=r_3–\rho_3]; [image: gd=r_3]; [image: ec=r_6–\rho_6]; [image: cf=r_6]. Da ciò: [image: ed=2r_3–\rho_3]; [image: ef=2r_6–\rho_6].

            [10] Cusano usa il termine «proportio». Si è preferito qui
              tradurre il termine latino con «proporzionalità», nella scia di
              Pacioli 1494, il quale molto probabilmente aveva letto i lavori di
              Cusano, così come le opere di Archimede tradotte in latino, tra il 1449 e il 1453, da Iacopo
              da San Cassiano (Iacobus Cremonensis). Nel 1489 Pacioli si trova a Roma, e Pierleone da Spoleto lo introduce nelle corti cardinalizie. Cfr. Giusti e Maccagni 1994; Giusti e Martelli 2010 (in part. Ulivi 2010); Esteve e Martelli 2011. La scelta della traduzione adottata è dovuta al fatto
              che, stando alla definizione attuale di proporzione, tra due
              grandezze c’è rapporto («habitudo»), e non proporzione, la quale
              ha luogo invece tra più rapporti: date le grandezze A, B, C, D,
              con A, B omogenee e C, D omogenee, si dice che sono in
              proporzione se il rapporto tra A e B è uguale al rapporto tra C
              e D. Cusano utilizza i termini «habitudo» e «proportio» con una
              certa leggerezza. In seguito si tradurrà tale espressione con
              «linee proporzionali», per rendere la lettura del testo più
              scorrevole.

            [11] Sul triangolo: [image: dg^2=4], per cui [image: dg=2]; [image: ge=\rho_3[=r_3–\rho_3]=1]; [image: ef=\frac{s_3}{2}=\sqrt{3}[=s_6]].
              Sull’esagono, [image: cf=r_6=\sqrt{3}]; [image: ef=\rho_6=\frac{3}{2}][image: ce=r_6–\rho_6=\sqrt{3}–\frac{3}{2}].

            [12] Si cercano le due grandezze el e en, tali che: el sta a
              eg come en sta a
              ec. [image: \frac{el}{eg}=\frac{en}{ec}=\lambda];
              [image: ed–el=ef–en=r];
              si ha: [image: el=\lambda\text{; }
              eg=\lambda(r_3–\rho_3)]; [image: en=\lambda ; ec=\lambda(r_6–\rho_6)];
              [image: ed=eg+gd=(r_3–\rho_3)+r_3]; [image: ed–el=r_3–\rho_3+r_3–\lambda(r_3–\rho_3)];
              [image: ef=\rho_6];
              [image: ef–en=\rho_6–\lambda(r_6–\rho_6)];
              [image: ed–el=ef–en=r_3–(\lambda–1)(r_3–\rho_3)=r_6–(\lambda–1)(r_6–\rho_6)=r].
              Risulta che [image: \lambda\approx\frac{4}{3}].

            [13] Secondo Cusano, qualunque sia il numero dei lati del poligono
              si ottiene sempre lo stesso rapporto di proporzionalità tra le
              corde e gli archi e quindi un valore preciso di r (il raggio del cerchio isoperimetrico ai
              poligoni). Si può dire che: [image: r_3–(\lambda–1)(r_3–\rho_3)=r_s–(\lambda–1)(r_s–\rho_s)=r].

            [14] Dato n, si tratta di determinare
              [image: \rho_n] e
              [image: r_n] da [image: \rho_3] e [image: r_3]; si ha cioè [image: r=lm=no=r_3–(\lambda–1)(r_3–\rho_3)=r_n–(\lambda–1)(r_n–\rho_n)]
              con [image: \lambda\approx\frac{4}{3}]. Inoltre,
              essendo [image: \frac{u}{2}=3\sqrt{r_3^2}–\rho_3^2=\sqrt{r_n^2}–\rho_n^2],
              si può determinare [image: \rho_n] e [image: r_n], e quindi [image: r_n–\rho_n].

            [15] Cfr. Cusanus 2010j, 9–10; Cusanus 2010i, 36.

            [16] Cusano crede che sia sufficiente conoscere l’angolo per
              determinare il seno di un triangolo qualsiasi, e, inversamente,
              che sia sufficiente conoscere il seno per conoscere l’angolo.
              Nell’ultimo paragrafo Cusano ritornerà sulla prima premessa del
              De geometricis transmutationibus.

            [17] Il cerchio maggiore è il cerchio circoscritto all’esagono
              aumentato del suo stesso eccesso sul cerchio inscritto. [image: ad=r_6+r_6–\rho_6];
              [image: gd=r_6]; [image: aik=gd=r_6=\sqrt{3}].
              Cusano vuole determinare il raggio r del cerchio isoperimetrico
              al triangolo equilatero BBC. Egli pone [image: ab=r_3=2]; [image: bc=s_3=2\sqrt{3}\rho_3]; [image: ak=r_6=\sqrt{3}]; [image: al=2r_6–r_3=2\sqrt{3}–2];
              [image: ag=r_6–\rho_6=\sqrt{3}–\frac{3}{2}].
              Introducendo le costanti [image: \lambda\times al] e [image: \lambda\times ag], e
              ponendo [image: bc–(\lambda+1)al=ab–(\lambda+1)ag=r]; e
              cioè: [image: r=2–\lambda(2\sqrt{3}–2)=\frac{7}{2}–\lambda(\sqrt{3}–\frac{3}{2})],
              si ha: [image: \lambda=\frac{(2\sqrt{3}–3)}{(2\sqrt{3}–1)}];
              [image: r\approx2[\frac{(7\sqrt{3}–10)}{(2\sqrt{3}–1)}]=1,72]
              anziché 1,65 e [image: \pi=\frac{(3\sqrt{3})}{2}[\frac{(2\sqrt{3}–1)}{(7\sqrt{3}–10)}]=\frac{[3(39+32\sqrt{3})]}{94}=3,01],
              che risulta un valore decisamente approssimativo.

            
  Sulla quadratura del cerchio del cardinale
              Nicola Cusano

              
          [image: link to parallel text] 

          1. Affermi di essere circondato da diversi
          studiosi che scrivono sulla quadratura del cerchio, e mi solleciti,
          ora che godo della necessaria calma, a fornirti un’esposizione
          soddisfacente di ciò che si può sapere su questo argomento. Apprendi
          ciò che penso mediante la proposizione che segue. Tuttavia sappi
          che, per te, ho trattato l’argomento in modo che tu, mediante la via
          dell’assimilazione[1], una volta messi da parte gli studi matematici, possa
          dedicarti più facilmente alla teologia[2].

          
            Proposizione

            [image: link to parallel text] 2. Se si può dare una circonferenza di cerchio
            uguale[3] al perimetro di un dato triangolo, allora il
            semidiametro di questo cerchio supera della sua quinta parte la
            linea tracciata dal centro del triangolo al punto del lato che
            dista dall’angolo un quarto del lato[4].

            [image: link to parallel text] 3. Ci sono coloro che ammettono la quadratura del
            cerchio. Essi devono necessariamente sostenere che le
            circonferenze dei cerchi possono essere uguali ai perimetri dei
            poligoni[5], poiché il cerchio è uguale al rettangolo[6], il cui lato minore è il semidiametro del cerchio e il
            lato maggiore è la semicirconferenza[7]. Allorché dunque si rendesse il quadrato uguale al
            cerchio in tale rettangolo, allora si avrebbe la linea retta
            uguale alla linea curva. Da ciò si arriverebbe all’uguaglianza tra
            la circonferenza del cerchio e il perimetro del poligono, come è
            evidente da sé.

            [image: link to parallel text] 4. Queste persone ammettono anche l’argomento
            seguente, senza il quale essi non arriverebbero a nulla, e cioè
            che: dove si può dare un maggiore e un minore, si può altresì dare
            un uguale. Poiché si può dare un quadrato maggiore di un cerchio –
            come è quello circoscritto – e uno minore – come è quello
            inscritto –, allora se ne può dare anche uno uguale, che non sarà
            né circoscritto, né inscritto, ma inscritto e circoscritto allo
            stesso tempo. Lo stesso argomento essi ammettono per le
            circonferenze: poiché si può dare una circonferenza di cerchio
            maggiore del perimetro di un triangolo – come è la circonferenza
            del cerchio circoscritto al triangolo –, e una minore del
            perimetro del triangolo – come è la circonferenza del cerchio
            inscritto –, si può dare anche una circonferenza uguale al
            perimetro di un triangolo, e questo cerchio non è né circoscritto
            né inscritto, ma circoscritto e inscritto allo stesso tempo.

            [image: link to parallel text] 5. Ci sono anche coloro che negano la quadratura
            del cerchio, e questi negano tutto ciò che è stato ora detto. Essi
            affermano infatti che questo argomento – dove si può dare un
            maggiore e un minore si può dare un uguale – non vale in
            matematica: infatti, si può dare un angolo di incidenza maggiore
            dell’angolo retto e uno minore dell’angolo retto[8] e tuttavia mai un angolo uguale[9]. Dunque, questo argomento non vale nelle grandezze
            incommensurabili. Se infatti si desse un angolo di incidenza
            maggiore di una parte aliquota[10] dell’angolo retto e minore di un parte aliquota
            dell’angolo retto, allora si darebbe anche un [angolo] uguale. Ma,
            siccome l’angolo di incidenza non ha proporzionalità[11] con l’angolo retto, esso non può essere maggiore o
            minore di una parte aliquota dell’angolo retto, e dunque mai
            uguale[12]. E poiché nessuna proporzionalità può esistere fra una
            superficie circolare e una superficie rettilinea[13], così come non può esistere fra l’angolo di incidenza e
            l’angolo retto, allora anche qui l’argomento non è valido[14].

            [image: link to parallel text] 6. Ciò è chiaro da quanto segue: ogni grandezza
            riducibile in un’altra si comporta necessariamente in modo tale
            che una qualunque parte dell’una possa essere parte
            dell’altra[15], essendo il tutto nient’altro che la somma delle sue
            parti. Ma una lunula[16], che è ricavata dal cerchio tramite una linea retta, non
            può essere ridotta, rispetto ai suoi angoli d’incidenza, che sono
            parti della sua grandezza, in una figura rettilinea: dunque,
            neanche rispetto alla sua totalità[17]. È altrettanto evidente che se un cerchio è riducibile
            in un quadrato, allora necessariamente le sue lunule saranno
            riducibili in figure rettilinee; ma poiché la prima è impossibile,
            allora la seconda, da cui essa deriva, deve essere altrettanto
            impossibile. È dunque chiaro che il semicerchio non può essere
            ridotto a una figura rettilinea, e di conseguenza non possono
            esserlo né il cerchio né alcuna sua parte[18].

            [image: link to parallel text] 7. Ciascun angolo d’incidenza supera un altro o è
            superato da un altro di una quantità pari a un angolo rettilineo,
            con il quale non può avere alcuna proporzionalità. Da ciò deriva
            che tutte le porzioni di cerchio delimitate da linee rette non
            sono in alcun modo proporzionali al cerchio. E poiché la porzione
            maggiore è quella delimitata dal [semi]diametro, allora tutte le
            altre non sono ad esso proporzionali. Dunque, non può essere
            ricavata alcuna parte aliquota dal cerchio attraverso tali linee,
            perché questa parte non avrebbe alcuna proporzionalità con la
            porzione maggiore, cioè con il semicerchio. Ebbene, questo
            argomento non vale: si ricavino una lunula maggiore di un terzo
            del cerchio e un’altra minore di un terzo del cerchio, e dunque
            una uguale a un terzo del cerchio. Ne consegue che le porzioni che
            sono delimitate da una linea retta minore del diametro non sono in
            alcun modo riducibili a figure rettilinee, perché esse sono parti
            aliquote del cerchio, e perché ne deriverebbe la quadratura del
            cerchio, se esse potessero essere ridotte a figure rettilinee[19].

            [image: link to parallel text] 8. Da ciò deduci che tutto ciò da cui segue la
            quadratura del cerchio è impossibile. Il cerchio ha dunque, per la
            sua singolarità, la seguente proprietà: come non è possibile
            ridurre un angolo di incidenza in un angolo rettilineo, allo
            stesso modo non è possibile ridurre un cerchio in una figura
            rettilinea. Come si dà un angolo rettilineo maggiore dell’angolo
            di incidenza di una quantità pari all’angolo di contingenza, che è
            una quantità divisibile solamente nel suo genere, dato che per
            ogni angolo di contingenza si possono dare un angolo di
            contingenza maggiore e uno minore, così, tuttavia, dal momento che
            l’angolo di contingenza è minore di ogni angolo rettilineo, si può
            allora dare un angolo rettilineo maggiore di un angolo di
            contingenza dato, che tuttavia non è maggiore di una parte
            aliquota dell’angolo rettilineo. Ugualmente, si può dare un angolo
            di incidenza minore di un angolo rettilineo dato, ossia minore di
            una quantità pari all’angolo di contingenza, che, tuttavia, non è
            una parte aliquota dell’angolo di incidenza, ma è minore di ogni
            parte aliquota di questo.

            [image: link to parallel text] 9. In questo modo si può dire che, dato un
            cerchio, si può dare un quadrato che, anche se fosse maggiore del
            cerchio, non lo sarebbe tuttavia di una parte aliquota di questi,
            cioè del quadrato. E, dato un quadrato, si può dare un cerchio
            minore del quadrato, che non sarà tuttavia minore di una parte
            aliquota del cerchio. Di conseguenza, da ciò si avrebbe che si
            potrebbe dare un quadrato maggiore, ma non di una parte aliquota
            di esso; e che, dato un qualsiasi quadrato, se ne potrebbe
            [sempre] dare un altro che si avvicini al cerchio in modo sempre
            più preciso, sebbene nessuno si avvicinerà ad esso in modo
            assolutamente preciso e nessuno sarà minore di esso di una parte
            aliquota del cerchio, e viceversa.

            [image: link to parallel text] 10. Ritengo questa posizione come la più vera.
            Ora, poiché i poligoni non sono grandezze dello stesso genere del
            cerchio, anche se si trova un solo poligono più simile, in termini
            di grandezza, a un cerchio dato rispetto a un altro, varrà
            tuttavia la regola: nelle cose che ammettono il più e il meno, non
            si arriva al massimo assoluto nell’essere e nella potenza. Infatti
            l’ampiezza[20] del cerchio è ciò che è il massimo assoluto in rapporto
            alle ampiezze dei poligoni, che ammettono il più e il meno, e che,
            per questo, non raggiungono l’ampiezza del cerchio, come i numeri
            non raggiungono l’ampiezza dell’unità, e le molteplicità non
            raggiungono la potenza di ciò che è semplice.

            [image: link to parallel text] 11. I sostenitori della prima opinione credono
            che sia sufficiente che, dato un cerchio, si possa dare un
            quadrato che non sia né maggiore, né minore del cerchio. Ogni
            grandezza è infatti maggiore di una parte aliquota di essa o di
            un’altra, alla quale è rapportata. Stessa cosa, se essa fosse
            minore. Ma, se un dato quadrato non è maggiore o minore del
            cerchio della più piccola parte assegnabile del quadrato o del
            cerchio, allora lo definiscono come uguale. È così, infatti, che
            essi hanno concepito l’uguale, ossia come ciò che è uguale a un
            altro, che non supera un altro, né è superato da un altro, di
            nessuna parte aliquota, per piccola che sia. Se si concepisce in
            questo modo l’uguale, penso che sia vero che si possa dare una
            circonferenza di cerchio uguale al perimetro di un poligono dato,
            e viceversa. Ma se si concepisce l’uguaglianza in maniera
            assoluta, per quel che spetta a una grandezza, senza tenere conto
            delle parti aliquote, allora i secondi avranno ragione nel dire
            che non si può assegnare una grandezza non circolare perfettamente
            uguale a una grandezza circolare; e questo per la spiegazione del
            principio [che è alla base] della proposizione, ossia: se al
            perimetro dato di un triangolo, etc.[21] Sia sufficiente quanto detto. Grazie a ciò puoi
            comprendere quanto ho scritto su questo argomento in modo diverso
            in alcuni altri miei libri[22].

          
          
            Spiegazione della proposizione

            [image: link to parallel text] 12. Per spiegare la proposizione si consideri il
            triangolo ABC nel quale è inscritto il cerchio EFG attorno al
            centro d e al quale è circoscritto il
            cerchio HI (cfr. figura 1). Si tracci la linea de in
            modo che e sia il centro fra a e b; poi si tracci la
            linea db. Si tracci una linea da d al centro fra e e b, e sia essa dk. Dico
            che dk è minore del semidiametro del
            cerchio isoperimetrico al triangolo di un quarto dello stesso dk.

            [image: ]
Fig. 1
[image: link to parallel text] 13. Si aggiunga quindi un quarto a dk; e sia dl maggiore di
            dk di un quarto di dk. Dico che dl è il
            semidiametro del cerchio isoperimetrico al triangolo. Si descriva
            quindi il cerchio LMN. Dico che la circonferenza LMN è uguale al
            perimetro [del triangolo] ABC, cioè che [la circonferenza] LMN non
            è né maggiore, né minore della più piccola parte aliquota,
            qualunque essa sia, del perimetro [del triangolo] ABC.

            [image: link to parallel text] 14. Per dimostrarlo procedo così e dico che, se
            si deve tracciare una linea da d verso eb, che è il semidiametro del cerchio
            isoperimetrico al triangolo, è necessario che essa si rapporti
            alla somma dei lati del triangolo come il semidiametro del cerchio
            [si rapporta] alla circonferenza. Ma, poiché il semidiametro non
            ha alcuna proporzionalità con la circonferenza, né in lunghezza né
            in potenza, cioè, poiché l’area del quadrato del diametro, che è
            la [seconda] potenza[23] del semidiametro, non ha alcuna proporzionalità con
            l’area del cerchio, allora essa non dovrebbe avere neanche alcuna
            proporzionalità con l’area del quadrato uguale al quadrato della
            linea della circonferenza, se potesse essere dato. È chiaro che né
            la linea cercata, né il suo quadrato possono essere proporzionali
            alla linea de o db,
            i cui quadrati sono proporzionali al quadrato di eb. Pertanto, non si può tracciare questa linea
            da d a una parte aliquota di eb o di db, così come la
            sua estremità [k], posta tra e e b, non potrà distare
            da e di una linea che sia proporzionale a
            eb o db; poiché, se
            così fosse, allora il quadrato sarebbe sempre proporzionale a eb, come è evidente[24]. Di conseguenza, non si può assegnare alcun punto su eb verso cui si possa tracciare una linea che
            sia esattamente quella che si sta cercando. Ma sicuramente su eb esiste un punto verso cui si può tracciare
            una linea che non sarà né maggiore né minore di alcuna parte
            aliquota, per quanto piccola sia, di quella cercata. Di
            conseguenza dico che, come non è possibile tracciare alcuna linea
            – che può essere quella che si sta cercando – da d a eb, verso una parte
            aliquota di eb, allo stesso modo non può
            esistere una linea tale che sia proporzionale alla linea cercata,
            come è evidente, visto che i quadrati di tutte queste linee sono
            proporzionali al quadrato della linea eb[25].

            [image: link to parallel text] 15. Dico inoltre che, se è vero che nessuna linea
            è perfettamente proporzionale alla linea cercata, una tuttavia
            sarà più proporzionale delle altre. E questo è evidente; infatti,
            anche se tutte non fossero proporzionali a de e eb, tuttavia,
            malgrado tutto, una sarà più proporzionale a
            eb e db rispetto alle altre, e dunque
            meno proporzionale alla linea cercata. Perciò, questa, fra tutte,
            è la più non–proporzionale a eb, de e db, e la meno non–proporzionale alla linea
            cercata. Esiste quindi una linea, fra tutte quelle che si possono
            tracciare da d verso le parti di eb, che sarà quella meno non–proporzionale alla
            linea cercata

          
          
            La ricerca della proporzionale

            [image: link to parallel text] 16. Tuttavia, per cercare la proporzionale, si
            deve considerare che, fra le linee non– proporzionali, alcune si
            rapportano come il lato e la diagonale [del quadrato][26], e [in questo caso] non si può mai trovare una
            proporzionalità così esatta che l’eccesso non sia maggiore di una
            parte aliquota: per esempio, un decimo della diagonale è minore di
            un settimo del lato, e l’eccesso è maggiore di una parte aliquota
            della diagonale e del lato; allo stesso modo in qualsiasi parte
            minore[27].

            [image: link to parallel text] 17. Un’altra non–proporzionalità è quella fra
            l’angolo di incidenza e l’angolo rettilineo. Infatti, la linea che
            corrisponde all’angolo di incidenza non è proporzionale alla linea
            che corrisponde all’angolo rettilineo, e la metà dell’angolo
            rettilineo è maggiore della metà dell’angolo di incidenza, e
            precisamente della metà dell’angolo di contingenza. Questa metà è
            pertanto minore di ogni parte aliquota, sia dell’angolo
            rettilineo, sia dell’angolo di incidenza[28].

            [image: link to parallel text] 18. Che tuttavia sia possibile trovare un tale
            rapporto fra le linee risulta chiaramente da quanto segue:
            infatti, essendo l’angolo una superficie e la linea il limite
            della superficie[29], è chiaro che, come l’angolo di contingenza è una
            superficie divisibile, anche il suo limite, ossia la linea che
            delimita questo angolo in quanto superficie, è divisibile allo
            stesso modo. Ugualmente, la linea che delimita la superficie
            dell’angolo rettilineo è divisibile a seconda della divisibilità
            della superficie. Si può dunque sottrarre dalla linea che delimita
            la superficie dell’angolo rettilineo la linea che delimita
            l’angolo di contingenza, e così la linea che delimita l’angolo di
            incidenza non è proporzionale alla linea che delimita l’angolo
            rettilineo secondo la linea che delimita l’angolo di contingenza.
            Pertanto, poiché questa linea che delimita l’angolo di contingenza
            è minore di qualsiasi parte aliquota della linea che delimita un
            angolo rettilineo o un angolo di incidenza, la proposizione
            risulta evidente[30].

            [image: link to parallel text] 19. E in ciò potrai osservare come, prima di
            qualsiasi divisibilità di una linea retta, la linea non è
            sottoponibile ad alcuna divisibilità, grazie alla quale una linea
            retta può tagliare un’altra. Tuttavia, anche se questa linea non è
            divisibile mediante quel tipo di divisione, con cui una retta è
            divisa da una retta — e, da questo punto di vista, essa è come un
            punto estremo irraggiungibile —, essa, tuttavia, è, a suo modo,
            divisibile mediante una curva. Perciò, quella linea, poiché
            delimita una superficie, è detta linea divisibile, sebbene possa
            apparire indivisibile in rapporto a una linea delimitata da un
            punto. Come, infatti, la divisibilità di una superficie termina
            nella linea che, rispetto alla superficie, è indivisibile, poiché
            essa non è divisibile nel modo in cui lo è una superficie,
            tuttavia la linea che delimita una superficie, considerata in sé
            stessa, è una grandezza divisibile; allo stesso modo, la
            divisibilità della linea retta attraverso un’altra retta termina
            nel punto limite della divisione e della linea, e, in quanto
            estremità della linea, è indivisibile nel modo in cui lo è una
            retta; tuttavia, considerato in sé stesso, è una grandezza
            divisibile[31]. È dunque possibile che una linea sia minore o maggiore
            di un’altra, non tuttavia di una qualsiasi parte aliquota o di una
            parte aliquota maggiore, ma di una parte aliquota minore. Da ciò,
            puoi ricavare che cosa si debba intendere per linee e punti
            indivisibili.

            [image: link to parallel text] 20. Dico, dunque, che, anche se si può tracciare
            da d verso eb una
            linea proporzionale a quella cercata, in modo che l’eccesso non
            sia maggiore di una parte aliquota, tuttavia nessuna linea può
            essere tracciata in modo che l’eccesso sia minore di una parte
            aliquota. Dico, inoltre, che, anche se si potessero tracciare
            innumerevoli linee siffatte, una sarà più precisa dell’altra, ma
            nessuna sarà in assoluto la più precisa.

            [image: link to parallel text] 21. Vediamo, dunque, quale fra tutte queste linee
            siffatte l’intelletto umano riesce a cogliere. È chiaro che se la
            linea, che deve essere proporzionale a quella cercata, è
            prolungata di una qualsiasi parte aliquota di essa, per esempio di
            un terzo, un quarto o altro, allora resta sempre proporzionale. Se
            dunque questa linea è prolungata di una lunghezza pari al rapporto
            della linea compresa tra la sua estremità su eb ed e e la linea ab, o pari al rapporto della linea compresa tra
            la sua estremità su eb e b e la linea ab, allora
            essa resta sempre proporzionale. Dunque, i rapporti o sono tali
            che per mezzo di uno di essi si giunge alla linea cercata, oppure
            non lo sono. Se non lo sono, allora, attraverso quella linea che
            noi presupponiamo come proporzionale alla linea cercata non nota,
            non potremo sapere nulla di quella cercata. Infatti, poiché la
            linea cercata non è nota e il prolungamento non ci conduce a essa,
            ma a una linea maggiore o minore, che non conosciamo, non potremo
            conoscere l’eccesso della linea cercata completamente ignota.

            [image: link to parallel text] 22. Se dicessi di essere arrivato alla linea
            cercata attraverso un altro prolungamento e non attraverso
            entrambi, sarebbe la stessa cosa, poiché noi non conosciamo
            attraverso quale prolungamento ciò accade e dove questa linea
            cade, visto che possono cadere infinite [linee] fra e e b. Se dicessi che i
            prolungamenti sono uguali e tuttavia minori o maggiori della linea
            cercata non nota, di nuovo non si potrebbe mai arrivare alla linea
            cercata.

            [image: link to parallel text] 23. La [linea] proporzionale, di cui l’intelletto
            umano può servirsi in questo genere di procedimenti per arrivare
            alla linea cercata, deve essere dunque necessariamente quella che,
            attraverso entrambi i prolungamenti uguali, che sia l’una o che
            sia l’altra, si presenta come la linea cercata, e questa è la
            linea tracciata da d al punto medio tra e e b, cioè a f. Ed essa è la sola per la quale il rapporto
            della distanza da e alla linea ab è lo stesso del rapporto della distanza da
            b alla linea ab[32]; prolungata di questo rapporto, cioè di un quarto della
            sua lunghezza, essa ci conduce alla linea cercata, e, procedendo
            in questo modo, è possibile per noi trovare ciò che si cerca,
            anche se si potrebbe trovare un’altra più precisa attraverso altri
            procedimenti[33].

            [image: link to parallel text] 24. Ma non pensare affatto che questa sia una
            pura congettura, così che per nessun’altra ragione l’intelletto
            umano sarebbe condotto ad asserire ciò; potrai fare tu un
            sillogismo che, in questo caso, tranne l’estrema precisione e nei
            limiti della differenza, è ammesso per la più piccola parte
            aliquota (cfr. figura 2).

            [image: ]
Fig. 2
Infatti, se si traccia una linea da d a
            un punto vicino a e, per esempio g, e la si prolunga secondo il rapporto tra eg e ab, essa è minore
            di quella cercata; e se la si prolunga secondo il rapporto tra gb e ab, essa è altresì
            minore di quella cercata; e se si traccia un’altra linea da d a un punto vicino a b,
            per esempio h, e la si prolunga secondo il
            rapporto tra eh e ab, essa è maggiore di quella cercata, e, allo
            stesso modo, secondo il rapporto tra hb e
            ab, essa è maggiore di quella cercata, come
            si mostra qui [dai due lati]. Dunque, si può tracciare un’altra
            [linea] da d ad eb,
            che, prolungata secondo il rapporto tra la linea compresa fra la
            sua estremità ed e e ab, non è né più grande né più piccola di
            quella cercata. Allo stesso modo, se ne può tracciare un’altra da
            d ad eb, che,
            prolungata secondo il rapporto della linea compresa fra
            l’estremità e b e ab, non è né più grande né più piccola di
            quella cercata. Ma poiché queste due linee, dai cui prolungamenti
            deve risultare la linea cercata, non possono essere diverse, visto
            che le linee diverse che si estendono da d
            ad eb non possono essere proporzionali con
            la stessa precisione a quella cercata, ma l’una sarà sempre più
            precisa dell’altra, allora, essendo prolungate secondo diversi
            rapporti tra le loro parti ed esse stesse, non possono pervenire
            ugualmente alla medesima linea cercata. Sarà quindi necessario che
            una sola sia la linea e uno solo il suo prolungamento, il che è
            possibile solo nel punto f. Di conseguenza,
            una spiegazione sufficiente di tutto ciò che si può sapere su
            questo modo di procedere è quella data nella proposizione così
            spiegata.

            [image: link to parallel text] 25. Tuttavia, poiché ti ho dimostrato tutto ciò
            che si può sapere sull’uguaglianza dei perimetri delle figure
            curvilinee e di quelle rettilinee — e cioè in che modo la cosa più
            vera che si sa è che l’uguaglianza non può essere conosciuta, e
            che ciò che al massimo si può sapere in questo ambito è rivelato
            in una breve proposizione —, ho così soddisfatto, per quanto ho
            potuto, il tuo desiderio. Ebbene sappi questo: tu possiedi il
            mezzo per cercare tutto ciò che si può sapere in ambito
            matematico. Nelle matematiche ogni proposizione attraverso cui si
            consegue l’uguaglianza precisa tra cerchio e quadrato è
            impossibile, e ogni proposizione, dal cui contrario si inferisce
            tale precisione, è necessaria. Affermo anzi che chi, nelle
            matematiche, sa ricondurre ogni ricerca a ciò, ha raggiunto la
            perfezione di quest’arte. Infatti, non c’è niente di vero in
            quelle proposizioni dal cui opposto non consegue l’uguaglianza tra
            il cerchio e il quadrato, e questa è la soluzione più
            soddisfacente di ogni ricerca matematica.

            [image: link to parallel text] 26. Da quanto ora esposto, ho tuttavia già
            spiegato ciò che, nella trasformazione delle figure [geometriche]
            e nei rapporti irriducibili a numeri [interi], si può sapere senza
            la massima precisione, e tuttavia al di qua di ogni errore,
            percepibile o ipotizzabile, anche della più piccola parte
            aliquota. In base a quanto detto sai che il diametro del cerchio
            sta alla sua circonferenza come due volte e mezzo la radice del
            numero 1575 sta a sei volte la radice del numero 2700. E, per
            quanto non sia precisissimo, [tale rapporto] non è tuttavia né
            maggiore né minore di un minuto o di una qualsiasi parte che si
            può dare di un minuto. Pertanto, non si può sapere quanto esso
            manchi della massima precisione, non potendo essere determinato
            mediante un numero comune[34]. Perciò, questo difetto non è emendabile, poiché può
            essere colto solamente da un intelletto superiore e in nessun caso
            attraverso l’esperienza dei sensi. Ora, già solo da ciò puoi
            capire che il valore più preciso si coglie in un ambito
            inaccessibile al nostro sapere, la cui conoscenza non ho letto sia
            stata finora trasmessa.

            [image: link to parallel text] 27. Oltre a ciò, sembra tuttavia utile osservare
            che, come vedi in questo caso, una figura, come il cerchio, non
            può essere colta attraverso un’altra, per esempio il quadrato, o
            viceversa, in modo così preciso da non poter essere colta in
            maniera ancora più precisa, anche se il difetto non è affatto
            percettibile. Allo stesso modo, in ogni ricerca del vero dove
            cerchiamo di conoscere qualcosa attraverso un’altra cosa, ossia
            ciò che è ignoto attraverso ciò che è noto, bisogna tener conto
            della stessa cosa, e cioè che si raggiunge il vero in modi vari e
            diversi, [restando, tuttavia] al di qua della massima precisione;
            infatti, si può raggiungere una maggiore precisione con un
            procedimento piuttosto che con un altro, ma non c’è nessun
            procedimento con cui si possa raggiungere la massima precisione,
            anche se l’errore non è manifesto; questo perché la misura con la
            quale l’uomo si mette alla ricerca del vero non è in alcun modo
            proporzionale [al vero], per cui chi si acquieta, accontentandosi
            di restare al di qua della precisione, non coglie l’errore. E in
            ciò sta la differenza tra gli uomini, poiché alcuni si vantano di
            essere pervenuti alla precisione, che i più sapienti riconoscono
            come irraggiungibile, così che risultano più dotti quelli che
            hanno conoscenza della loro ignoranza[35].

            [image: link to parallel text] 28. All’inizio ti ho invitato a passare da queste
            matematiche alla teologia attraverso la via dell’assimilazione;
            questo, infatti, è il modo più adatto di elevarsi. Le dottrine
            matematiche, infatti, trattano di ciò che viene colto con le vere
            forze della mente, in quanto considerano le figure nella loro
            verità, prive della materia mutevole[36]. Per questo motivo, una volta che si sia lasciata la
            molteplicità delle figure dietro di sé, ci si eleva più
            facilmente, attraverso una sorta di assimilazione, alla prima
            forma, cioè alla forma delle forme del tutto assoluta. Tutti i
            teologi, infatti, cercano una qualche precisione, in modo da poter
            raggiungere con essa l’eternità del cerchio, che è semplicissima e
            assolutamente una. Ma la forza infinita è incommensurabile
            rispetto a tutto ciò che non è infinito, come l’ampiezza del
            cerchio resta incommensurabile rispetto a tutto ciò che non è
            circolare[37].

            [image: link to parallel text] 29. Dunque, come il cerchio è la figura
            geometrica perfetta[38], che complica in sé tutte le perfezioni delle figure, e
            la sua ampiezza [complica] l’ampiezza di tutte le figure[39] e non ha nulla in comune con ogni altra figura, dal
            momento che è assolutamente una e semplice in sé, così l’eternità
            assoluta è la forma di tutte le forme, che complica in sé ogni
            perfezione, e la sua forza onnipotente abbraccia tutte le forze
            delle forme, tutte le specie, senza tuttavia avere niente in
            comune con tutte le altre forme. E come il cerchio, per il fatto
            di non avere né inizio né fine, ha una certa somiglianza con
            l’eternità[40], e nella sua ampiezza, che racchiude le ampiezze di
            tutte le figure, rappresenta una qualche immagine
            dell’onnipotenza, e nella sua connessione, mediante la quale la
            circonferenza è unita all’ampiezza, rappresenta una qualche
            immagine del nesso infinito e pieno d’amore[41], così noi intuiamo nell’essenza divina l’eternità che ha
            in sé l’onnipotenza, e in queste il nesso infinito. Nell’eternità
            intuiamo il principio senza principio[42] e diciamo che esso è il principio paterno.
            Nell’onnipotenza, che è dal principio senza principio[43], intuiamo il principio illimitato che procede dal
            principio. Nel nesso infinito intuiamo il nesso pieno d’amore del
            principio senza principio e del principio che procede dal
            principio. Per il fatto che nell’essenza divina intuiamo
            l’eternità, intuiamo il Padre[44]. Per il fatto che intuiamo in questa stessa essenza la
            potenza dell’eternità, che non può che essere infinita, essendo la
            potenza dell’eternità, ossia del principio senza principio,
            intuiamo l’uguaglianza dell’unità eterna, cioè il Figlio del
            Padre. Per il fatto che intuiamo il nesso pieno d’amore dell’unità
            eterna e della sua uguaglianza, intuiamo lo Spirito. Dunque,
            nell’unità semplicissima dell’eternità intuiamo l’uguaglianza,
            fortissima e potentissima, e viceversa, nell’uguaglianza l’unità,
            e, allo stesso modo, intuiamo nel nesso l’unità e l’uguaglianza.
            Senza l’unità dell’essere eterno niente può essere. Senza
            l’uguaglianza di questa unità, niente può essere così com’è. Senza
            il nesso dell’essere e dell’essere così, niente può essere così
            com’è. Dunque, senza il principio unitrino, niente può essere[45].

            [image: link to parallel text] 30. Tutto ciò è rappresentato [sotto forma di
            immagine] nel cerchio: attraverso la sua ampiezza e il nesso
            strettissimo attraverso cui il cerchio si congiunge massimamente
            con se stesso, vediamo che esso è coerente e unito per natura.
            Dopo di che notiamo che tutti i poligoni sono costituiti da un
            perimetro, da un’ampiezza, e da un nesso [dell’uno e dell’altro]
            con l’immagine del cerchio, e che tutti i perimetri dei poligoni
            derivano dalla circonferenza del cerchio, e tutte le ampiezze dei
            poligoni si allontanano in maniera non–proporzionale dall’ampiezza
            del cerchio, e la stessa cosa accade per tutti i nessi [degli uni
            e degli altri]; in questo modo, notiamo che analogo è anche il
            rapporto tra le [diverse] specie delle cose sensibili e la forma
            delle forme, così che le specie di queste cose sensibili sono in
            rapporto a Dio pressappoco come il triangolo, il quadrato, il
            pentagono, ecc. sono rapportati al cerchio.

            [image: link to parallel text] 31. Tuttavia, ciascuno di questi poligoni ha una
            perfezione circoscritta, al di fuori della quale non è, né può
            essere. L’essere del triangolo non può in alcun modo esistere al
            di fuori della triangolarità. E la stessa cosa vale per il
            quadrato, ecc. Dunque, ogni specie riposa all’interno del suo
            ambito, che è racchiuso nel suo perimetro, al di fuori del quale
            né può, né desidera essere. Infatti, come è ben noto, il triangolo
            cesserebbe tutto [il suo] essere, se passasse a quadrato. Dunque,
            dalla propria natura, attraverso la quale ha l’essere e l’essere
            così, nessuna specie può essere condotta alla distruzione, poiché
            essa riposa all’interno dei limiti della sua natura specifica. E
            questa quiete è proprio sua, poiché, entro il perimetro della sua
            perfezione, ha a suo modo la forza divina, nella quale gode del
            nesso pieno d’amore[46].

            [image: link to parallel text] 32. Dunque, ogni specie sensibile ha, nel modo
            che le è proprio, una certa misura in comune con l’eternità, con
            la potenza e con il nesso d’amore infinito, sebbene in questa
            misura non vi sia nulla di proporzionale; la stessa cosa vale per
            ogni poligono che ha una potenza e un’ampiezza limitate, ha un
            nesso e un’unione deboli, e non può avere alcuna proporzionalità
            con l’unità circolare dell’eternità[47], con la sua ampiezza inesauribile e la sua unione
            infinita, anche se tutto ciò che un poligono ha, lo ha in modo
            tale che, nella natura del triangolo e del quadrato, può
            partecipare della potenza del cerchio. Il rapporto fra le specie
            sensibili e la forma delle forme è dunque lo stesso che intercorre
            fra i poligoni e il cerchio. Inoltre, poiché esistono molti modi
            d’essere del triangolo, visto che una cosa è il triangolo
            rettangolo, un’altra è il triangolo acutangolo, e un’altra è il
            triangolo ottusangolo, e all’interno di ciascuno di questi tipi di
            triangolo rientrano diversi modi d’essere a seconda della varietà
            della materia, tutti questi modi sono delle contrazioni
            individuali[48]. Infatti le specie, considerate veramente in se stesse,
            rientrano in vari modi a seconda della varietà della materia.
            Infatti il triangolo è rappresentato meglio e più perfettamente in
            oro che in acqua o in qualsiasi altra materia labile[49], e inoltre è colto più adeguatamente con l’intelletto di
            come è raffigurato in una qualsiasi materia.

            [image: link to parallel text] 33. Da ciò osserviamo come tutti i poligoni
            possono essere inscritti a un cerchio, e come, nel cerchio, tutti
            sono contenuti meglio di come sono nella materia, poiché là essi
            sono il cerchio. E in ciò vediamo che, se tutti i poligoni possono
            essere inscritti a un cerchio percepito attraverso i sensi e se il
            cerchio dell’eternità è l’atto di tutte le possibilità, allora,
            come tutti i poligoni possono essere inscritti in modo sensibile
            al cerchio, così, nella specie o forma dell’eternità tutte le
            specie sono in atto la stessa forma eterna. E come la forma del
            triangolo ha l’essere più vero nella nostra mente che nella
            materia variabile, così nella mente eterna o Verbo, dove sono la
            verità stessa, tutte le specie delle cose hanno l’essere più vero
            rispetto a quello che possiedono nella diversità individuale[50].

            [image: link to parallel text] 34. Andando ancora oltre, osserviamo che i cerchi
            sono vari, e che non può che esservi un solo cerchio massimo,
            verissimo, sussistente in sé, eterno e infinito[51], al quale non ci si eleva attraverso gli altri cerchi,
            per quanto grandi, poiché, nelle cose che ammettono un più e un
            meno, non si perviene al limite massimo assoluto[52]. E di questo cerchio infinito consideriamo cose
            meravigliose e inesprimibili, che altrove ho trattato più
            diffusamente.[53]

            [image: link to parallel text] 35. Diciamo, dunque, che esistono nature
            circolari che non possono essere principio di se stesse, poiché
            esse non sono come il cerchio massimo assoluto, l’unico che è
            l’eternità stessa[54]. Gli altri cerchi, sebbene non sembrino avere un inizio
            e una fine, in quanto sono considerati per astrazione dal cerchio
            percepito attraverso i sensi, sono tuttavia cerchi il cui essere
            proviene dal primo cerchio infinito eterno, non essendo essi
            l’eternità infinita stessa, e questi cerchi, in paragone con ii
            poligoni ad essi inscritti, sono per così dire una specie
            d’eternità e di perfetta semplicità. Essi hanno, infatti,
            un’ampiezza che eccede l’ampiezza di tutti i poligoni in modo non
            proporzionale[55], e sono la prima immagine del primo cerchio infinito,
            anche se, a causa dell’infinità del primo, non sono ad esso
            paragonabili. E ci sono nature che hanno un certo movimento
            circolare e senza fine intorno all’essenza del cerchio infinito,
            che complicano in loro la forza di tutte le altre specie, che,
            dalla loro forza complicativa, esplicano, mediante assimilazione,
            tutte le altre specie, che intuiscono tutto in loro, che si
            contemplano come immagine del cerchio infinito e che, attraverso
            questa stessa immagine, cioè attraverso se stesse, si elevano alla
            verità dell’eternità o all’esemplare stesso: queste sono le nature
            intellettuali che abbracciano tutto tramite la loro forza
            intellettuale[56].

            [image: link to parallel text] 36. Ora, tutte le figure cercano, per quanto
            possono, di misurare l’ampiezza della verità eterna. Ma come tra
            il finito e l’infinito non esiste alcuna proporzionalità, così Dio
            resta una precisione sconosciuta[57], al di sopra di ogni ricerca, e così è non soltanto
            sconosciuto, ma è anche quella stessa precisione sconosciuta che
            non può essere conosciuta in nessuna cosa conoscibile. Ogni
            creatura, infatti, si sforza di definire il proprio Dio nei limiti
            della propria natura. Come un triangolo vorrebbe [per così dire]
            «triangolare» un cerchio, un quadrato «quadrarlo», e così via per
            tutti gli altri poligoni, così anche l’intelletto vorrebbe
            intendere [Dio][58]. Ma, sebbene Dio – che non ha parti, dal momento che è
            la semplicità infinita – non ecceda di alcuna parte aliquota
            nessuno dei vari modi di misurare in maniera specifica, egli
            eccede tuttavia ogni misura propria della grandezza, dal momento
            che egli è superiore a qualsiasi modo in cui si possa ricercare. E
            così eccede tutte le misure più accurate, le frazioni più piccole,
            poiché è la più sottile di tutte queste frazioni, cosicché non si
            può raggiungere la sua precisione, né crescendo né
            decrescendo[59].

            [image: link to parallel text] 37. Tuttavia, a ogni natura è sufficiente
            raggiungere Dio nella sua specie e nel modo in cui può. Così,
            infatti, essa [ogni natura] è in quiete, perché, al di fuori della
            sua specie, non lo ricerca, né ne coglie l’esistenza. Dunque,
            questa sufficiente comprensione, con la quale essa lo raggiunge
            nella sua specie e nel modo in cui può, è la sua quiete[60], perché è ciò che sazia il movimento della sua
            natura.

            [image: link to parallel text] 38. Questo è quanto ci illustra, mediante
            l’assimilazione, l’indagine che abbiamo condotto sul triangolo nel
            tentativo di elevarlo fino a eguagliare [il suo perimetro] alla
            circonferenza del cerchio. E abbiamo raggiunto la quiete mediante
            l’unico procedimento che, sebbene abbia dei difetti, abbiamo
            riconosciuto come il più preciso, ossia elevando il triangolo fino
            a renderlo uguale al cerchio. Questo procedimento non converrebbe
            alla specie dei quadrati. Se, tuttavia, un quadrato si elevasse,
            nel modo che gli è proprio, fino a eguagliare il cerchio, potrebbe
            rallegrarsi di aver raggiunto la quiete, anche se non ci fosse
            precisione, purché un altro quadrato non fosse più perfetto nella
            sua specie. Lo stesso vale per le altre figure.

            [image: link to parallel text] 39. Allo stesso modo, ogni intelletto giungerà
            alla quiete se, nel modo in cui è dato alla sua specie, avrà
            sentito di essersi elevato fino a uguagliare l’infinito, pur
            restando la precisione divina sempre inaccessibile[61]. Queste e infinite altre cose potrai ricavare da te. È
            sufficiente averle trattate in questo modo. Così sia.

          
        Note a piè pagina
[1] Il termine «adsimilatio» designa un processo per analogia o
              somiglianza. Sul tema, cfr. Kremer 2004.

            [2] Il destinatario di questo scritto non è noto: potrebbe
              trattarsi del cardinale Bessarione, ma si tratta di un dato incerto, non supportato da
              alcuna fonte diretta o indiretta (cfr. Carratelli 1998, 201–225). Nel periodo in cui sembra sia stato concluso il De circuli quadratura, ossia il 12 Luglio
              1450 (cfr. Liebmann 1929, 261), Cusano si trova a Rieti. Dal punto di vista della
              produzione letteraria, il 1450 è uno degli anni più fecondi del
              Cardinale: il 15 Luglio scrive il libro I del De sapientia, l’8 Agosto il libro II, il 23 Agosto
              il De mente, e il 13 Settembre, sempre
              dello stesso anno, pubblica il De staticis
              experimentis. Dall’attenta ricostruzione di Hofmann e Hofmann 1980, nota 1, 201, si può affermare che, da un punto di vista
              cronologico, questo testo è preceduto soltanto da due scritti:
              il De geometricis transmutationibus e il
              De complementis arithmeticis. Esso
              presenta un’attenta discussione sulla quadratura del cerchio e,
              benché non proponga alcun avanzamento di rilievo sulla
              questione, risulta tuttavia molto interessante per il suo
              contenuto filosofico: Cusano mette in opera il suo progetto di
              condurre il lettore alla teologia attraverso la matematica:
              quadrare il cerchio significa comprendere Dio, sicché l’ars matematica si configura un modo, anzi
              “il” modo più efficace per comprendere l’incomprensibile. Tale
              nexus è tuttavia realizzabile solo
              mediante una riflessione di natura epistemologica
              sull’omogeneità delle grandezze e sui limiti della nostra
              conoscenza, che si conclude, nella seconda parte del testo, con
              la ripresa delle idee già esposte nel De docta
              ignorantia, il che conferisce al trattato un tono
              mistico-simbolico, molto diverso dal discorso iniziale.

            [3] Il termine «aequalis» è reso con «uguale», lasciando al
                contesto di chiarire se si tratta di un’uguaglianza di
                lunghezze, di superfici o di volumi. In questo caso è chiaro
                che si tratta di un’uguaglianza di lunghezze, ma subito più
                avanti Cusano utilizza lo stesso termine per intendere
                un’uguaglianza di superfici, ossia un’equivalenza. La
                proposizione che Cusano sta enunciando è la prima proposizione
                del De geometricis transmutationibus,
                che rappresenta l’oggetto del dibattito fra Cusano e i
                matematici del tempo. Subito dopo egli si serve della prima
                proposizione de La misura del cerchio
                di Archimede, che Cusano poteva leggere in Bradwardine 1495b, III, 6, concl. 5.

              [4] Cfr. Cusanus 2010b, 9.

              [5] Con poligono si traduce «figura poligonya», ossia figura
                costituita da più lati.

              [6] Con rettangolo si traduce «quadrangulus». Va sottolineato
                che in questo, come negli altri scritti matematici, il termine
                «figura quadrangularis» è equivoco: Cusano lo riferisce tanto
                al quadrato quanto al rettangolo e al parallelogramma. Di
                volta in volta, a seconda del contesto, si renderà il termine
                «quadrangularis» con la figura corrispondente. Sull’utilizzo,
                da parte di Cusano, del termine «quadrangulus» invece di
                «quadratus» e sull’influenza dalla terminologia matematica
                medioevale, cfr. Hofmann 1966, 98–136, spec. 105.

              [7] Cfr. Cusanus 2010b, 36, 7–16.

              [8] Bisogna intendere qui «rectus» nel senso di rettilineo, più
                che di ortogonale: si tratta cioè dell’angolo formato
                dall’intersezione di due rette.

              [9] Come sottolinea Nicolle 1998, nota 4, 34, Cusano si riferisce qui a una discussione sul
                principio di omogeneità delle grandezze, di cui tuttavia non
                indica i protagonisti. Tale principio è stato stabilito
                nell’antichità da Eudosso e da Archimede (cfr. Gardies 1988). Il rifiuto della proposizione secondo cui «se si
                può dare un maggiore e un minore allora si può altresì dare un
                uguale» si trova in Da Novara 2005, III, 15 e in Bradwardine 1495b, II, 3, concl. 7.

              [10] Per «aliquota» s’intende: contenuta un numero intero di
                volte, ossia un sottomultiplo intero. Cfr. Bradwardine 1328, 68: «pars autem aliquota est illa quae, aliquotiens
                sumpta, reddit aequaliter summum suum. Pars vero non-aliquota
                est illa quae nullatenus, aliquotiens sumpta, reddit
                aequaliter summum suum» («Una parte aliquota è invero quella
                che, presa un determinato numero di volte, dà come risultato
                il suo tutto. Una parte non aliquota è quella che, presa un
                qualsiasi numero di volte, non dà come risultato il suo
                tutto»). La citazione si trova in Clagett 1964–1984b, 493.

              [11] Cusano usa il termine «proportio». Si è preferito qui
                tradurre il termine latino con «proporzionalità», nella scia
                di Pacioli 1494, il quale molto probabilmente aveva letto i lavori
                di Cusano, così come le opere di Archimede tradotte in latino, tra il 1449 e il 1453, da
                Iacopo da San Cassiano (Iacobus Cremonensis). Nel 1489 Pacioli si trova a Roma, e Pierleone da Spoleto lo introduce nelle corti cardinalizie. Cfr. Giusti e Maccagni 1994; Giusti e Martelli 2010 (in part. Ulivi 2010; Esteve e Martelli 2011). La scelta della traduzione adottata è dovuta al
                fatto che, stando alla definizione attuale di proporzione, tra
                due grandezze c’è rapporto («habitudo»), e non proporzione, la
                quale ha luogo invece tra più rapporti: date le grandezze A,
                B, C, D, con A, B omogenee e C, D omogenee, si dice che sono
                in proporzione se il rapporto tra A e B è uguale al rapporto
                tra C e D. Cusano utilizza i termini «habitudo» e «proportio»
                con una certa leggerezza. Quando in seguito si leggerà «linee
                proporzionali», ciò è stato fatto solo per rendere la lettura
                del testo più scorrevole.

              [12] Nel Medioevo per angolo di incidenza si intende l’angolo
                formato dall’intersezione di un arco e una retta, all’interno
                dell’arco, mentre per angolo di contingenza quello formato
                dall’intersezione di un arco e una retta, all’esterno
                dell’arco, ossia fra l’arco e la tangente. Un angolo retto
                (nel senso di ortogonale) può dunque essere definito come la
                somma di un angolo di incidenza e di un angolo di contingenza.
                L’angolo di contingenza, per quanto piccolo, è considerato
                all’epoca come una grandezza, e, come tale, è «divisibilis in
                infinitum», ossia suscettibile di aumento e diminuzione
                continui, a seconda che il raggio dell’arco aumenti o
                diminuisca (cfr. Bradwardine 1495b, II, 4, concl. 6).

                [image: ]
Ciò dà luogo a una difficoltà insormontabile: essendo
                l’angolo di contingenza un angolo “infinitesimale”, l’angolo
                di contingenza è fondamentalmente incommensurabile all’angolo
                di incidenza e all’angolo rettilineo, e incommensurabili sono
                pure l’angolo di incidenza e l’angolo rettilineo (cfr. Bradwardine 1495b, II, 4, concl. 7). La questione di cui discute Cusano non è come
                calcolare la progressione continua verso l’infinitamente
                piccolo di un angolo di contingenza, bensì com’è possibile
                porre nella medesima proporzione grandezze curve e grandezze
                rettilinee. Cfr. Wertz 2001.

              [13] Per «superficie rectilinea», Cusano intende una superficie
                delimitata da lati dritti. Cusano parla anche di «figura
                rectilinea» sempre per intendere una figura delimitata da
                linee diritte.

              [14] Cfr. Da Novara 2005, III, 15.

              [15] Cfr. la definizione 1 di Eudosso posto all’inizio del libro
                V degli Elementi di Euclide: «Μέρος ἐστὶ μέγεθος
                μεγέθους τὸ ἔλασσον τοῦ», («Una grandezza è parte di
                una grandezza, la minore della maggiore, quando essa misuri
                completamente la maggiore») (Euclide 2007, 975).

              [16] Per lunula Cusano non intende una porzione di cerchio
                delimitata da due archi di cerchio di raggio diverso (come per
                Ippocrate di Chio), ma una porzione di cerchio delimitata da una
                retta, ossia un segmento circolare. Questa concezione deriva
                da Bradwardine 1495b, III, 6, concl. 5: «Aliam probationem minoris tangit Aristoteles per portiones lunares, quam tamen reputat in aliis
                locis philosophiae insufficientem, et ideo de ea non curo ad
                presens». Cfr. anche De Muris 1998, VI, 25–32, 259–266. È tuttavia parimenti possibile che Cusano intenda
                per lunula non una superficie, bensì la lunghezza della
                circonferenza compresa tra la circonferenza e la linea retta.
                Qui, visto il contesto, sembra più plausibile la prima
                ipotesi, ossia che Cusano consideri la lunula come una
                superficie, sebbene le oscillazioni terminologiche e i
                presupposti cusaniani rendano problematica un’interpretazione
                univoca. Stessa cosa si ritrova in Cusanus 2010i, 81.

                [image: ]
[17] Cfr. Cusanus 2010i, 71–77.

              [18] Qui si tratta dell’impossibilità della quadratura del
                cerchio per approssimazione attraverso le lunule, metodo
                ripreso più tardi nel Cusanus 2010i, 71–77. Sul procedimento cusaniano della quadratura «per
                lunulas», cfr. Böhlandt 2002, 72ss, Müller 2005.

                [image: ]
Sia ACB un arco di cerchio; [image: AC=CB]; [image: (\text{angolo di incidenza } EAB –\text{ angolo                 rettilineo } CAB)<\text{angolo di incidenza }                 EAB]; [image: AF=FC]; [image: (\text{angolo di incidenza } EAB –\text{ angolo                 rettilineo } FAB)<\text{angolo di incidenza }EAB –\text{                 angolo rettilineo }CAB]. Se si continua il
                procedimento, si diminuisce sempre più il resto dell’angolo di
                incidenza, e tuttavia non si esaurisce mai, poiché un angolo
                di incidenza non può essere trasformato in un angolo
                rettilineo. Infatti: [image: \frac{\text{angolo di incidenza                 }EAB}{\text{angolo rettilineo }CAB}] e [image: \frac{\text{angolo di incidenza                 }EAC}{\text{angolo rettilineo }CAB}] è «per
                definitionem» irrazionale. Ma poiché [image: \text{angolo di incidenza }EAB– \text{ angolo di                 incidenza }EAC=\text{ angolo rettilineo }CAB], allora
                [image: \frac{\text{angolo di                 incidenza }EAB}{\text{angolo di incidenza }EAC}] deve
                essere irrazionale, e così il rapporto delle superfici dei
                segmenti circolari è inesprimibile. Su questo punto, cfr.
                Hofmann e Hofmann 1980, nota 9, 203.

              [19] È interessante notare questa inversione – errata – del
                ragionamento di Cusano: se finora Cusano aveva sostenuto che
                la quadratura del cerchio è impossibile per l’impossibilità di
                trasformare porzioni di cerchio in figure rettilinee, ora
                invece afferma che è impossibile trasformare le porzioni di
                cerchio in figure rettilinee perché ne conseguirebbe la
                quadratura del cerchio, il che è impossibile. Tradotto:
                [image: (\text{non}P\implies\text{non}Q)\implies(\text{non}Q\implies\text{non}P)=\text{Falso}].

              [20] Per rispettare al meglio lo spirito del linguaggio
                cusaniano, a differenza sia di J. E. Hofmann che traduce
                «capacitas» con «Fläche» (Hofmann e Hofmann 1980, 40), sia di J.M. Nicolle che traduce il termine latino
                con «Surface» (Nicolle 1998, 26), si è preferito differenziare i due termini (capacitas e superficies), utilizzati entrambi da
                Cusano, rendendo il latino capacitas a
                volte con ampiezza, altre volte, a seconda del contesto, con
                estensione o superficie.

              [21] Cfr. Cusanus 2010j, 2.

              [22] Cusano si riferisce qui agli unici due testi che precedeno
                questo scritto: il De geometricis
                transmutationibus e il De complementis
                arithmeticis.

              [23] Poiché Cusano riferisce il termine «potentia» sempre alla
                seconda potenza, da questo momento si tradurrà «potentia» con
                «quadrato».

              [24] Cfr. Da Novara 2005, X, def. ii; Bradwardine 1495b, III.

              [25] Il ragionamento di Cusano è il seguente:

                dl non è proporzionale a de o db, poiché il
                diametro non è proporzionale alla circonferenza, benché
                [image: de^2 +                 eb^2=db^2].

                dl è proporzionale a dk, secondo la costruzione [image: (\frac{dl}{dk}=\frac{5}{4})]. Cerchiamo
                quindi una proporzione per dk.

                dk non è proporzionale a eb o db; ek non è proporzionale a eb o db.

                fra le possibili linee proporzionali a eb o db, dk non è il segmento cercato o
                proporzionale al segmento cercato.

              [26] Cusano utilizza il termine «diameter» per indicare la
                diagonale, in base a una etimologia inesatta da «δύο» e «μετρεĩν» (che divide in due) ripresa
                da Bradwardine (Bradwardine 1495b, II, 1, concl. 8: «linea diagonalis quae ducitur ab angulo ad angulum
                […]in quadrato vocatur diameter»). Una fonte chiara è Pisanus 1862, 2. Alla fine del Quattrocento si trova ancora il
                termine diametro per designare la diagonale del quadrato
                nell’opera di Luca Pacioli: «Si ha costume di parlare di diametro anche per i
                quadrati: ecco (è) perché, al fine di evitare qualunque
                equivoco, si dice diametro del cerchio e diametro del quadrato
                per differenziarli» (Pacioli 1509, I, 71, 133). Cfr. anche Cusanus 2010g, 4 e Cusanus 2010d, 26. Cfr. Da Novara 2005, X, 7, add; Bradwardine 1495b, III, 4, concl. 3.

              [27] Riguardo all’incommensurabilità tra il lato e la diagonale
                del quadrato Cusano si ispira a Da Novara 2005, X, 7, add e a Bradwardine 1495b, III, 5, concl. 3: «Se esistono tre linee proporzionali, la seconda è
                più potente della prima». Da ciò si evince che la linea media
                proporzionale fra il lato e il diametro è incommensurabile a
                ciascuno in lunghezza così come in potenza. Se indichiamo la
                diagonale D con 10d e il lato S con
                7s, allora [image: 100d^2 = 98s^2<100s^2], e così
                [image: d<s], o
                [image: \frac{D}{10}<\frac{S}{7}], come
                affermato.

              [28] Che la metà dell’angolo rettilineo sia più grande
                dell’angolo di incidenza della metà dell’angolo di contingenza
                corrispondente è un’affermazione che non risulta presente in
                alcun tetso del tempo. Si può quindi ricostruire questo
                ragionamento che confronta angoli rettilinei e angoli
                curvilinei:

                [image: ]
TAB [image: =]
                angolo rettilineo

                EAB [image: =]
                angolo di incidenza

                TAE [image: =]
                angolo di contingenza

                TAC [image: =\frac{\text{TAB}}{2}]

                EAC [image: =\frac{\text{EAB}}{2}]

                TAC [image: >]
                EAC, poiché TAC [image: =] EAC [image: +] TAE.

              [29] Cusano trae questa definizione dell’angolo come superficie
                da una fonte che non è né Da Novara 2005, I, né Bradwardine 1495b, I, 1. Una simile concezione si ritrova nell’XI sec., in
                un testo De Geometra che va sotto il
                nome di Gerbert di Aurillac, il futuro papa Silvestro II (ca. 945–1003):
                «Angulus est spatium, quod sub duabus lineis se invicem
                tangentibus continetur» («l’angolo è uno spazio contenuto tra
                due linee tangenti l’uno all’altra» (Gerbertus 1899, 66). Cusano, qui e altrove, non sembra avere una
                concezione chiara della superficie, attraverso cui egli
                vorrebbe rappresentare l’angolo. Riprendiamo la figura posta
                da Hofmann e Hofmann (1980, nota 18, 205):
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Verosimilmente Cusano pensa l’angolo rettilineo AOB intorno
                al punto O delimitato dall’arco AB e pone OC come tangente a
                OB. AC sarebbe, per così dire, l’unità di misura per l’angolo
                di incidenza, CB per il corrispondente angolo di contingenza,
                a condizione che il raggio dell’arco ACB sia considerato come
                una grandezza infinitesimale. Cfr. Gerbertus 1899, 4, 3; 2, 2.

              [30] Inizia qui una discussione sulla divisibilità di una
                grandezza di un genere per un’altra di un genere diverso (una
                linea per una superficie, un punto per una linea, una linea
                retta per una linea curva, ecc.), in cui Cusano espone un
                procedimento piuttosto farraginoso.

              [31] Si vede qui una difficoltà del ragionamento di Cusano,
                conseguente dal suo procedimento di annullamento progressivo
                dell’angolo concepito come superficie: se una superficie si
                divide in linee, la linea si divide in punti, e il punto
                stesso sarà divisibile, sebbene sia indivisibile
                «rectilinealiter». Quest’idea di punto contraddice la
                definizione euclidea del punto «Σημεῖόν
                ἐστιν, οὗ μέρος οὐθέν» (Euclide 2007, I, 1), che si ritrova anche in Da Novara 2005 («punctus est, cuius pars non est») e che pure
                Cusano sosteneva. Cfr. Cusanus 2010g, 14: «Quantitas autem, quae non potest esse minor, non
                est quantitas, sed punctus». Nel De
                mathematica perfectione parla di un «continuum […]semper
                divisibile» (Cusanus 2010j, 4).

              [32] La soluzione arriva come una visio:
                il segmento cercato passerà per f, la
                metà di eb, perché [image: \frac{ef}{ab}=                 \frac{fb}{ab}=\frac{1}{4}]. Questa rivelazione fa da
                corollario all’ambiguità generale del discorso di Cusano: egli
                afferma che l’esatta quadratura del cerchio è impossibile da
                conoscere, ma, allo stesso tempo, tenta una soluzione che fa
                leva sulla nozione di mediana. Cfr. Cusanus 2010b, 7–16.

              [33] Cusano si rende conto che non esiste un numero intero che
                esprima il rapporto tra la metà del lato eb o il raggio della circonferenza
                circoscritta db (o di quella inscritta
                de) al triangolo equilatero iniziale e
                il raggio dl del cerchiò
                isoperimetrico, così come non esiste un numero intero che
                esprima il rapporto tra dl e eb o tra dk e eb.

                [image: ]
Cusano tuttavia sa che si possono approssimare attraverso
                numeri razionali questi rapporti tra linee. E pensa che ciò si
                possa realizzare con la stessa «praecisio» con la quale
                l’angolo rettilineo si rapporta all’angolo di contingenza,
                ossia fino alla conformità tra le grandezze infinitesimali.
                Cusano sa di muoversi su un terreno pericoloso, perciò si
                serve di una visio capace di andare in
                soccorso alla ragione.

              [34] Per «comune» Cusano qui intende un numero intero. Cusano dà
                come valore approssimativo [image: \frac{(2\frac{1}{2}\sqrt{1575})}{(6\sqrt{2700})}].
                Secondo J. E. Hofmann (Hofmann e Hofmann 1980, nota 23, 207) ci sarebbe qui un’ottima approssimazione di
                [image: \pi]. Nel
                sistema di numerazione sessagesimale, [image: \frac{\text{raggio}}{\text{circonferenza}}=\frac{1}{\pi}=\frac{19}{60}+\frac{5}{(60)^2}+\frac{56}{(60)^3}+\cdots].
                I due limiti di Archimede sono: [image: \frac{7}{22}=\frac{19}{60}+\frac{5}{(60)^2}+\frac{27}{(60)^3}+\cdots]
                e [image: \frac{71}{223}=\frac{19}{60}+\frac{5}{(60)^2}+\frac{11}{(60)^3}+\cdots].
                Il valore proposto da Cusano è: [image: \frac{19}{60}+\frac{5}{(60)^2}+\frac{38}{(60)^3}].

              [35] Cfr. Cusanus 1972b, I, 10, 51, 1–6. Dopo questo punto inizia una seconda parte di
                carattere metafisico, cui la trattazione matematica fin qui
                condotta è in qualche modo propedeutica.

              [36] Cfr. Cusanus 1983a, 7, 103ss.; Cusanus 1988b, 52, 1–7; 63, 6ss.; Cusanus 1972a, I, 2, 8, 1; I, 10, 27; I, 12, 33; Cusanus 1994, 3, 75ss.; 5, 23–29.

              [37] Cfr. Cusanus 1972a, I, 3, 9.

              [38] Cusanus 1972a, I, 21, 63.

              [39] Cfr. Cusanus 1994, 5, 23–30.

              [40] Cfr. Cusanus 1972a, I, 21, 64.

              [41] Cfr. Cusanus 1972a, II, 10, 154.

              [42] Cfr. Cusanus 1972a, I, 10, 29; I, 26, 87.

              [43] Cfr. Cusanus 1988c, 13, 1–10.

              [44] Cfr. Cusanus 1972a, I, 7, 19; I, 8, 22; I, 26, 88; Cusanus 1982, 24, 71, 4–14; Cusanus 1988a, II, 82, 15–17; 28–33.

              [45] Cfr. Cusanus 1972a, I, 9, 10 e II, 7; Cusanus 1959a, 8; Cusanus 1983b, I, 22, 15ss.; Cusanus 1988c, I, 34, 1–3; Cusanus 1972b, 1, 6, 2ss.; Cusanus 1988b, 33; 37, 14–18.

              [46] Cfr. Cusanus 1972a, I, 5, 120.

              [47] Cfr. Cusanus 1972a, I, 21, 64.

              [48] Cfr. Cusanus 1972b, I, 109, 8–9.

              [49] Cfr. Cusanus 1988b, 55, 8–10. Visto il contesto, si è preferito tradurre il
                termine «labilis» con «fragile», a differenza sia di J. E.
                Hofmann che traduce con «veränderlich» (Hofmann e Hofmann 1980, 54), sia di J.M. Nicolle che rende il termine latino
                con «variable» (Nicolle 1998, 32).

              [50] Cfr. Cusanus 1988b, 56, 21ss.; 57, 4–8; Cusanus 1973, 13, 4–8; Cusanus 1972a, I, 1, 31.

              [51] Cfr. Cusanus 1972a, I, 21, 64; Cusanus 1983b, II, 42, 6–8.

              [52] Cfr. Cusanus 1972a, I, 3, 9; I, 6, 15 e 16. 

              [53] Cfr. Cusanus 1972a, I, 21 e Cusanus 1972b, I, 12.

              [54] Cfr. Cusanus 1988a, I, 46, 7ss..

              [55] Cfr. Cusanus 1994, 9, 1–4.

              [56] Cfr. Cusanus 1988a, II, 80, 6ss.; II, 101; I, 28, 13–17; Cusanus 1972b, I, 4, 12 ss..

              [57] Cusanus 1972a, I, 3, 9; I, 2, 8; II, 90.

              [58] Cfr. Cusanus 1959b, V, 185, 2–186, 6.

              [59] Cusanus 1972a, I, 23, 72; Cusanus 2000, 10, 38, 8; Cusanus 1982, 34, 102, 8–14.

              [60] Cfr. Cusanus 1988a, II, 74, 2–4; Cusanus 1982, 35, 105, 25; Cusanus 1983b, II, 31, 12–18.

              [61] Cfr. Cusanus 1972b, 2, 55, 18.

              
  La quadratura del cerchio di Niccolò Cusano,
              cardinale, legato e vescovo di Bressanone

              
          [image: link to parallel text] 

          1. Sebbene già da molto tempo dallo studio
          della geometria abbiamo tratto una speculazione più elevata e
          un’utilità generale, tuttavia, fra le innumerevoli e serie
          preoccupazioni che ha la legazione apostolica, si è piacevolmente
          insinuata, tra le conversazioni degli studiosi, l’affermazione
          secondo la quale è possibile conoscere la quadratura del cerchio,
          che [tuttavia] non è stata [ancora] trovata. Recentemente, andando a
          cavallo, abbiamo risolto la questione, e abbiamo messo per iscritto
          ciò a cui siamo pervenuti[1].

          [image: link to parallel text] 2. Leggiamo che nessuno più di Archimede[2] si è avvicinato a una tale conoscenza. Egli per primo ha
          mostrato che un rettangolo[3] è uguale a un cerchio in cui il semidiametro è
          moltiplicato per la semicirconferenza[4]: è necessario che ciò sia proprio così, se si tiene conto
          che esso è proprio uguale, ossia né maggiore né minore[5]. Infatti, in tutti i poligoni equiangoli[6] e isoperimetrici – e in questo scritto parliamo soltanto
          di questi –, se si moltiplica il semidiametro del cerchio inscritto
          per la semicirconferenza, risulterà un rettangolo uguale[7]. Euclide ha mostrato che è anche possibile stabilire facilmente il
          medio proporzionale fra il semidiametro e la semicirconferenza[8]. Di conseguenza, una volta conosciuto tale medio, che è il
          lato del quadrato equivalente, si conosce la linea retta uguale alla
          circonferenza del cerchio e la sua quadratura. Questa è una
          dimostrazione più che certa. Tuttavia, Archimede, credendo di aver trovato quest’ultima parte per mezzo
          della spirale, si è allontanato dal vero. Infatti, la spirale non si
          può descrivere se non attraverso un punto che si muove dal centro
          sul semidiametro nello stesso tempo in cui il semidiametro ruota per
          descrivere il cerchio[9]. La definizione della spirale presuppone dunque questi
          movimenti, il cui rapporto è uguale a quello tra il semidiametro e
          la circonferenza. Si presuppone dunque ciò che si cerca[10]. Sarà allora più facile rendere una linea retta uguale a
          una linea curva che rappresentare correttamente la spirale.

          [image: link to parallel text] 3. Consideriamo il triangolo[11] e il cerchio aventi la massima ampiezza[12]. Nel triangolo, i semidiametri dei cerchi, inscritto e
          circoscritto, si rapportano in modo contrario al semidiametro del
          cerchio, nel quale l’inscritto e il circoscritto coincidono. Essi
          infatti differiscono massimamente nel triangolo, dove il
          semidiametro del circoscritto è il massimo e quello dell’inscritto è
          il minimo, e la loro somma è la minima. Accade esattamente il
          contrario nel cerchio, dove la loro somma, uguale al diametro del
          cerchio, è la massima[13]. Per questo sappiamo che tutti i poligoni intermedi,
          isoperimetrici ed equiangoli, a seconda della loro superficie, si
          avvicinano in quelle linee per eguagliare il semidiametro del
          cerchio. Se dunque si segnassero la lunghezza dell’eccesso del
          semidiametro del cerchio rispetto al semidiametro del cerchio
          inscritto al triangolo e la lunghezza della quale il semidiametro
          del cerchio è minore del semidiametro del cerchio circoscritto al
          triangolo, allora ogni poligono intermedio, a seconda della sua
          superficie, si comporterà in maniera proporzionale con l’aumento del
          semidiametro del cerchio inscritto a sé rispetto al semidiametro
          dell’inscritto al triangolo, e con la diminuzione del semidiametro
          del cerchio circoscritto a sé dal semidiametro del cerchio
          circoscritto al triangolo[14]. Infatti, poiché queste lunghezze variano a seconda della
          diversa superficie, il rapporto di quelle non può essere diverso dal
          rapporto delle loro superfici. Inoltre è sempre necessario che, come
          l’eccesso si rapporta all’eccesso, così la differenza si rapporta
          alla differenza, dal momento che la superficie segue una variazione
          così come un’altra, e segue questa né più né meno di quella. In
          tutti i poligoni, dunque, l’eccesso e la differenza si rapporteranno
          tra di loro in maniera inversa nella stessa proporzione. Di
          conseguenza, se è dato un unico rapporto e si conoscono queste
          lunghezze in un determinato poligono noto, si può fare lo stesso
          anche nel cerchio. E poiché nel cerchio l’eccesso e la differenza,
          insieme, sono uguali al semidiametro [del cerchio] inscritto al
          triangolo, come si capisce da sé, allora, se, conformemente al
          rapporto trovato, si dividesse il semidiametro del cerchio inscritto
          nel triangolo e si aggiungesse il segmento maggiore allo stesso
          semidiametro del cerchio inscritto al triangolo, si avrebbe il
          semidiametro del cerchio isoperimetrico e tutto ciò che si
          cerca.

          [image: link to parallel text] 4. Ti renderemo questa parte più chiara nel modo
          seguente (cfr. figura 1). Partendo dalla linea ab
          divisa in tre parti, si disegni il triangolo CDE. Sul suo lato cd si riporti un quarto di ab, ossia ik, e da questo
          si costruisca il quadrato IKLM. Si disegnino il cerchio inscritto e
          circoscritto; sia fg il semidiametro del
          cerchio inscritto nel triangolo, fh quello
          del circoscritto; sia ng quello
          dell’inscritto al quadrato, no quello del
          circoscritto; si tracci poi la linea fh e si
          segni il suo punto medio con g. Si traccino,
          a partire da f, g, h, linee di lunghezza a
          piacere, e, parallelamente a fh, la linea tn, il cui punto medio è aa; in seguito, si segni con np il semidiametro del cerchio inscritto in un
          poligono isoperimetrico qualunque, per esempio un quadrato, e con
          no il semidiametro del circoscritto. Traccia
          una linea all’infinito da g attraverso p, un’altra allo stesso modo da h attraverso o, e segna
          con q il loro punto d’intersezione. Traccia
          la linea sr, che passi per q, parallelamente a fh, e
          segna con bb il suo punto medio. Diciamo che
          rq è il semidiametro del cerchio cercato, la
          cui circonferenza è uguale alla linea retta ab[15].

          [image: ]
Fig. 1
[image: link to parallel text] 5. Ciò si prova facilmente e in vari modi. Dunque,
          prendendo la figura precedente, si ponga la linea g bb come la differenza tra la superficie del
          triangolo e quella del cerchio isoperimetrico; e che da rs si muova una linea parallelamente al lato fh; è evidente che le linee hq e gq tagliano tutte le
          [linee corrispondenti alle] differenze fra i semidiametri dei cerchi
          inscritti e circoscritti di tutti i poligoni, dal triangolo fino al
          cerchio, dove [inscritto e circoscritto] coincidono. È evidente
          anche che quella linea in movimento taglia sulla linea bb g contemporaneamente tutte le [linee
          corrispondenti alle] differenze di superficie fra il triangolo e il
          cerchio. Infatti, quanto minore è la differenza fra i detti
          semidiametri, tanto più estesa è la figura; perciò, il cerchio è,
          fra tutte le figure, quella con la massima superficie, poiché qui [i
          semidiametri] coincidono, e il triangolo è la figura con la minima
          superficie, poiché qui [i semidiametri] differiscono al massimo. Sia
          dunque tn la linea in movimento, che taglia
          la linea g bb nel punto aa, e sia po la differenza
          dei semidiametri nel quadrato; di conseguenza, se g bb è uguale alla differenza della superficie
          del triangolo e quella del cerchio isoperimetrico, allora g aa è uguale alla differenza della superficie
          del triangolo e quella del quadrato. E poiché np è, per quanto premesso, il semidiametro del
          cerchio inscritto al quadrato, e aa p è il
          suo eccesso rispetto al semidiametro fg del
          cerchio inscritto al triangolo, da ciò, bb q
          sarà l’eccesso del semidiametro del cerchio isoperimetrico rispetto
          al semidiametro del cerchio inscritto al triangolo. Infatti, come si
          sa, bb g sta a aa g
          come bb q sta a aa p.
          Inoltre, le differenze fra i semidiametri dei cerchi inscritti nei
          poligoni isoperimetrici corrispondono alle differenze delle
          superfici. Infatti, la differenza delle superfici nei poligoni
          equiangoli e isoperimetrici non può derivare che dalla differenza
          dei semidiametri dei cerchi inscritti, poiché, si sa che la
          superficie risulta dal prodotto del semidiametro in questione – che
          varia in queste diverse figure – per la semicirconferenza, che resta
          sempre la stessa. Così, se ponessi la linea bb
          s, cioè [la somma dei] due eccessi dei semidiametri,
          corrispondente all’eccesso della superficie del cerchio sul
          triangolo, allora nel quadrato un tale eccesso di superficie
          corrisponderà alla linea uguale alle due linee to e p aa, poiché il
          rapporto fra questa linea e s bb è lo stesso
          di quello fra p aa e bb
          q, come sopra. Oppure, se dicessi che la superficie del
          triangolo è minore di quella del cerchio, come la linea hg, allora quella del quadrato sarà minore, come
          po[16].

          [image: ]
Fig. 2
[image: link to parallel text] 6. Ma, se ora tu negassi e sostenessi che il
          semidiametro del cerchio è minore, per esempio che la sua estremità
          fosse a metà fra s e v, che è il punto in cui termina la linea g, così che rv sia il
          semidiametro del cerchio isoperimetrico, allora, se si prolunga vs fino a diventare uguale a rv – che è rx – e,
          similmente, si prolunga fh fino a diventare
          uguale a rx, cosicché fz risulti uguale a rx,
          traccia la linea zx, e da u le linee su g e su h, e, laddove intersecano la linea tn, segna 2 e 9 (cfr. figura 2). Prolunga tn fino a zx, e sia cc n uguale rx. Dico che
          se il diametro dell’inscritto nel cerchio isoperimetrico aggiunge al
          semidiametro del cerchio inscritto nel triangolo una linea pari a
          bb v, allora il semidiametro del cerchio
          inscritto nel quadrato aggiunge aa 2. Dunque,
          se il semidiametro del cerchio inscritto nel quadrato aggiunge una
          linea pari a aa p, allora il semidiametro del
          cerchio isoperimetrico aggiunge una linea pari a bb q. Questo è evidente da sé, se il rapporto fra
          le linee aggiunte è uguale a quello fra bb v
          e aa 2 e si conosce la linea aggiunta nel
          quadrato, che è uguale a a ap. Dunque, essa
          sarà nel cerchio uguale a bb q, essendo il
          rapporto fra aa p e bb
          q, uguale a quello fra aa 2 e bb v[17].

          [image: link to parallel text] 7. Che proprio questo è il rapporto è ciò che si
          dimostrerà. Infatti, se si pone che rv è il
          semidiametro del cerchio inscritto nel cerchio, allora vx sarà il semidiametro del circoscritto. Queste
          due linee coincidono nel cerchio isoperimetrico. È evidente che rx è la linea formata da quei due semidiametri,
          allo stesso modo fz è uguale ad essa ed è
          formata dai due semidiametri dell’inscritto e del circoscritto al
          triangolo. Dunque, in tutti i poligoni compresi fra il triangolo e
          il cerchio, questi due semidiametri sono tali che non saranno né
          minori di fz, né maggiori di rx, e quindi saranno sempre uguali. Nel quadrato,
          n cc sarà dunque uguale a questi due
          semidiametri. E poiché 2 9 è necessariamente
          uguale a po, essendo il triangolo GHQ uguale
          al triangolo GHV – qv infatti è parallelo a
          gh – e allo stesso modo o
          2 e gh paralleli, allora 9 2 sarà uguale a po, come
          tu sai da Euclide, prop. 37 del Libro I, e prop. 4 del libro VI[18]. Ma po è l’eccesso del semidiametro
          del circoscritto al triangolo rispetto al semidiametro
          dell’inscritto al medesimo triangolo, dunque [è uguale a] 2 9; e, essendo n 2 uguale
          a cc 9, allora n 2
          sarà uguale al semidiametro dell’inscritto al quadrato, e 2 cc [sarà uguale] al semidiametro del
          circoscritto al medesimo quadrato. Se dunque si pone che il
          semidiametro del cerchio aggiunge una linea pari a bb v al semidiametro dell’inscritto nel
          triangolo, allora aggiunge necessariamente al semidiametro
          dell’inscritto nel quadrato una linea pari a aa
          2. Queste linee aggiunte possono essere segnate come gli
          eccessi delle superficie rispetto alla superficie del triangolo,
          poiché nei poligoni equiangoli e isoperimetrici l’eccesso delle
          superfici deriva unicamente da questi [eccessi delle linee]. Il
          rapporto tra queste linee aggiunte sarà uguale a quello tra aa 2 e bb v, il che è ciò
          che si doveva provare. E si potrà procedere in tutti i poligoni così
          come nel quadrato. Da ciò risulta la tesi (cfr. figura 3).
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Fig. 3
[image: link to parallel text] 8. Altrimenti detto: la superficie del cerchio è
          massima rispetto alla superficie del triangolo e la differenza fra i
          semidiametri del cerchio inscritto e di quello circoscritto è nulla,
          ossia la minima in assoluto, poiché non può esserci una minore. Ma
          la differenza fra i semidiametri del cerchio inscritto e di quello
          circoscritto al triangolo è massima e l’eccesso della superficie del
          triangolo rispetto a se stesso è nullo o il minimo in assoluto. Sia
          dunque ab una qualsiasi linea uguale alla
          differenza fra i semidiametri nel triangolo nonché all’eccesso della
          superficie del cerchio rispetto alla superficie del triangolo
          (cfr. figura 4); si faccia di questa linea il lato del quadrato
          ABCD, e sia ab uguale alla differenza fra i
          semidiametri più quella differenza minima della superficie del
          triangolo con la sua propria superficie, sia cd l’eccesso della superficie del cerchio
          rispetto alla superficie del triangolo più la differenza minima in
          assoluto dei semidiametri. Si tracci la diagonale[19] bc. Dico che in tutti i poligoni
          intermedi fra il triangolo e il cerchio, le linee corrispondenti
          agli eccessi della superficie rispetto alla superficie del
          triangolo, aggiunti alla differenza fra i semidiametri, non possono
          essere né maggiori né minori di ab o cd, come è evidente.

          [image: ]
Fig. 4
Si tracci dunque la linea ef, uguale e
          parallela ad ab e a cd, sia essa tagliata da bc nel punto g; sia ge uguale alla differenza fra tali semidiametri
          nel quadrato; è chiaro che gf sarà uguale
          all’eccesso della superficie del quadrato rispetto alla superficie
          del triangolo. Il rapporto fra la superficie del quadrato rispetto
          alla superficie del triangolo sarà dunque uguale all’eccesso della
          superficie del cerchio rispetto alla superficie del triangolo, cioè
          come quello fra gf e cd. Si segni su fg
          l’eccesso[20] del semidiametro dell’inscritto nel quadrato rispetto al
          semidiametro dell’inscritto nel triangolo, e sia esso fh; si tracci una linea da b attraverso h fino alla
          linea cd, e sia i il
          punto di intersezione. Dico che di è
          l’eccesso del semidiametro del cerchio isoperimetrico rispetto al
          semidiametro del cerchio inscritto nel triangolo; infatti, il
          rapporto fra fg e dc è
          uguale a quello fra fh e di. Tuttavia la differenza di superficie fra i
          poligoni equiangoli e isoperimetrici rispetto alla superficie del
          triangolo non risulta se non dalla differenza dei semidiametri dei
          cerchi inscritti [al poligono] rispetto al semidiametro del cerchio
          inscritto nel triangolo. Il rapporto fra gli eccessi di superficie
          rispetto alla superficie del triangolo è dunque uguale al rapporto
          fra la differenza tra i semidiametri dei cerchi inscritti [al
          poligono] e il semidiametro del cerchio inscritto nel triangolo. Da
          ciò risulta quanto si cercava[21].

          
            Seni e corde

            [image: link to parallel text] 9. Da ciò si potrà ora ricavare la conoscenza
            perfetta delle corde e degli archi[22]. Se infatti il rapporto tra l’eccesso del semidiametro
            del cerchio inscritto a un poligono equiangolo e isoperimetrico
            dopo il triangolo, rispetto al semidiametro del cerchio inscritto
            al triangolo, e l’eccesso del semidiametro del cerchio
            circoscritto al triangolo rispetto al semidiametro del
            circoscritto a questo poligono, è sempre lo stesso, e se questi
            eccessi, uniti contemporaneamente alla loro differenza, cioè alla
            freccia[23], sono uguali alla freccia del lato del triangolo, come
            risulta da quanto detto sopra, allora, una volta conosciuto il
            rapporto fra questi eccessi, che tuttavia non può essere colto
            numericamente come non si può determinare la metà della doppia
            proporzionale[24], l’arte di ogni sapere sulle corde e sugli archi è
            trovata.

            [image: link to parallel text] 10. Si può trovare tuttavia il rapporto fra gli
            eccessi per approssimazione numerica in questo modo: sia il
            semidiametro del cerchio circoscritto al triangolo uguale 14. Il
            semidiametro del cerchio inscritto sarà 7, il cui quadrato è 49;
            il quadrato del semilato del triangolo sarà tre volte tanto, ossia
            147 e il quadrato del semidiametro del cerchio circoscritto sarà
            quattro volte tanto, ossia 196. Il semilato del quadrato sarà
            dunque la radice[25] di [image: \frac{9}{16}] [e] del quadrato del semilato
            del triangolo, ossia la radice di 82 più [image: \frac{11}{16}]; il semidiametro del cerchio
            inscritto sarà altrettanto; il semidiametro del cerchio
            circoscritto sarà la radice del doppio, ossia 165 più [image: \frac{6}{16}]. Sottrai
            dunque la radice di 49 dalla radice di 82 più [image: \frac{11}{16}]. La
            differenza ottenuta è l’eccesso del semidiametro del cerchio
            inscritto al quadrato rispetto al semidiametro del cerchio
            inscritto nel triangolo, che farà poco più di 2. Sottraendo la
            radice di 165 più [image: \frac{6}{16}] dalla radice di 196, si
            otterrà poco più di 1. In questo modo otterrai gli eccessi e il
            loro rapporto è ciò attraverso cui si può ricercare qualsiasi
            cosa. Se infatti sottraessi questi eccessi dalla freccia del lato
            del triangolo, cioè 7, allora resterebbe la freccia [del lato] del
            quadrato. Se dunque dividessi 7 secondo il suddetto rapporto di
            eccessi, e aggiungessi la parte più grande al semidiametro del
            cerchio inscritto al triangolo, avrai il semidiametro del cerchio
            isoperimetrico[26].

            [image: link to parallel text] 11. In questo modo, dal quadrato del lato del
            triangolo o del quadrato, potrai trovare anche il quadrato del
            lato di qualsiasi poligono; e, da questa conoscenza e dal rapporto
            fra gli eccessi si giunge alla freccia e al semidiametro del
            cerchio inscritto, e da ciò, alla corda. È la massima perfezione
            dell’arte geometrica, alla quale finora non ci risulta che gli
            antichi siano pervenuti. L’arte delle trasformazioni geometriche è
            ora compiuta, un’arte che poco fa, se pure non in maniera
            esaustiva, abbiamo descritto sufficientemente, dato che ha portato
            alla quadratura del cerchio[27].

            [image: link to parallel text] 12. E pensiamo che nulla più di ciò che c’è da
            sapere nelle geometrie resterà nascosto a colui che vuole
            ricercare con diligenza in questo campo. Ho scritto soprattutto
            queste cose per mostrare la potenza dell’arte delle coincidenze,
            attraverso la quale si svela tutto ciò che è nascosto in ogni
            questione. Infatti, solo e soltanto dalla coincidenza dei
            semidiametri del cerchio inscritto e di quello circoscritto,
            diversi in ogni poligono, e coincidenti soltanto nel cerchio,
            questa ricerca ci ha condotto alla meta.

            Gloria a Dio.

          
        Note a piè pagina
[1] Cusano scrive questo trattato nel 1453 per risolvere il
              problema della quadratura del cerchio mediante la coincidenza
              degli opposti. Non disponendo né del simbolismo algebrico, né
              dell’analisi geometrica, né del calcolo funzionale, la sua
              dimostrazione poggia unicamente su rapporti proporzionali
              stabiliti attraverso il metodo degli isoperimetri. Dopo aver
              esposto rapidamente la questione, Cusano anticipa il principio
              della sua dimostrazione (ripresa anche nel §5): nei poligoni
              regolari e isoperimetrici, dal triangolo al quadrato, ecc. …
              fino al cerchio, la differenza di superficie fra il cerchio
              inscritto e il cerchio circoscritto è massima nel triangolo,
              diminuisce nel quadrato, ecc. fino al cerchio, dove essa è minima sempliciter. Nel cerchio, infatti,
              l’inscritto e il circoscritto coincidono. Secondo Cusano basta
              determinare il rapporto fra questi cerchi, tramite i loro
              semidiametri, per trovare il rapporto fra la superficie di un
              cerchio e quella di un quadrato. Egli procede in tre tempi:
              all’inizio, mostra che le variazioni delle linee esprimono le
              variazioni delle superfici (fig. 1); poi mostra
              la regolarità delle variazioni (fig. 2); infine,
              dopo aver ricapitolato i rapporti fra cerchio, rettangolo e
              quadrato (fig. 3), riprende la dimostrazione della regolarità
              delle variazioni (fig. 4). La fine del testo enuncia una generalizzazione
              trigonometrica del suo principio, e procede a un calcolo
              approssimativo di π, prima di concludere con un elogio della
              coincidenza degli opposti.

            [2] Cfr. Archimedes 1910b, Prop. 1.

            [3] Con rettangolo si traduce «quadrangulus». In questo, come
              negli altri scritti matematici, il termine «figura
              quadrangularis» è equivoco: Cusano lo riferisce tanto al
              quadrato quanto al rettangolo e al parallelogramma. Di volta in
              volta, a seconda del contesto, si renderà il termine
              «quadrangularis» con la figura corrispondente. Sull’utilizzo, da
              parte di Cusano, del termine «quadrangulus» invece di
              «quadratus» e sull’influenza dalla terminologia matematica
              medioevale, cfr. Hofmann 1966, 98–136, spec. 105.Cfr. Cusanus 2010c, 3, 5.

            [4] Cfr. Cusanus 2010b, 36, 7–9; Cusanus 2010i, 8, 17.

            [5] Cfr. Cusanus 2010b, 36, 15, Cusanus 2010c, 11; Cusanus 1994, 12, 26ss..

            [6] Si è tradotto qui «isopleura» con «equiangoli» ossia, nel
              linguaggio attuale, «regolare»; Cusano riprende il metodo degli
              isoperimetrici attraverso la Geometria
              speculativa di Bradwardine o il De Ysoperimetris di
              Zénodoros tradotta dal greco (cfr. Busard 1980, 1, 6). L’utilizzo di tale metodo è stato oggetto di
              un’aspra critica da parte di Jean Borrel (Cfr. Buteus 1559). Cfr. Cusanus 2010b, 4, nota 6 e 8. Sul tema, cfr. Gericke 1982, 160–187; Di Meglio 2010, 15–21; Heath 1921, II, 2019–211; Porter 1933.

            [7] Cfr. Cusanus 2010i, 10.

            [8] Cfr. Euclides 1883–1888, VI, 9; Da Novara 2005, VI, 13; Bradwardine 1495b, III, 4, concl. 4. Cfr. anche Cusanus 2010j, fig. 3; Cusanus 2010i, 8, 4–7.

            [9] È verosimile che Cusano non conoscesse il De spiralibus di Archimede, ma soltanto l’ottavo capitolo del libro De arte mensurandi di de Muris. Cfr. Clagett 1964–1984a, III, 45–88, 309ss.; Clagett 1964–1984a, IV, 308–310.

            [10] Cusano accusa l’Archimede delle Spirali di petitio principii, perchè, a suo parere, la
              determinazione meccanica delle proprietà del movimento
              generatore della curva spirale esigeva la conoscenza del
              rapporto fra le diverse unità di misura spaziale del moto
              rettilineo e del moto circolare, cioè esigeva quella
              commensurabilità aritmetica fra raggio e circonferenza che
              doveva essere il risultato e non il presupposto della
              costruzione stessa. Sul tema, cfr. De Bernart 2002a, 339–382, spec. 370–374.

            [11] Cusano non utilizza «triangulum», ma «trigonum». Infatti, la
              figura che egli costruisce è composta da tre lati; in nessun
              momento egli considera il valore degli angoli.

            [12] Il termine «capacitas» è qui tradotto con ampiezza; tuttavia,
              per rispettare al meglio lo spirito del linguaggio cusaniano, a
              differenza sia di Hofmann che traduce «capacitas» con «Fläche»
              (cfr. Hofmann e Hofmann 1980, 59) sia di Nicolle che traduce il termine latino con
              «Surface» (cfr. Nicolle 1998, 38), si è preferito differenziare, laddove è possibile, i
              due termini (capacitas e superficies), utilizzati entrambi da Cusano,
              rendendo il latino capacitas a volte con
              ampiezza, altre volte, a seconda del contesto, con estensione o
              superficie.

            [13] Cfr. Cusanus 2010b, 8; Cusanus 2010i, 4–5.

            [14] Cfr. Cusanus 2010i, 4–8. Per meglio comprendere il testo, utilizziamo il
              simbolismo al quale siamo oggi abituati. Se si chiama n il numero dei lati di un poligono, r il semidiametro del cerchio circoscritto,
              [image: \rho] il
              semidiametro del cerchio inscritto, si trova che se n cresce, allora [image: r_n–\rho_n] decresce. Da cui si può
              ricavare il rapporto seguente fra il triangolo e un qualsiasi
              altro poligono isoperimetrico e regolare: [image: \frac{n_3}{n}=\frac{(r_3–\rho_3)}{(r_n–\rho_n)}].

            [15] Nella prima figura, con la linea ab
              divisa in tre parti, si disegna il triangolo CDE. Sul suo lato
              cd si riporta tracciando ik, un quarto di ab;
              da là, si costruisce il quadrato IKLM. Si disegnano i cerchi
              inscritti e circoscritti; siano essi fg,[image: \rho_3],fh,
              [image: r_3] per il
              triangolo e ng, [image: \rho_4] no,
              [image: r_4] per il
              quadrato; si traccia in seguito la linea fh e si segni il punto medio con g. La seconda figura, accanto alla fig. 1 e
              da essa tratta, è destinata, con una nuova «tavola delle
              proporzioni», a mostrare sulla linea tn
              (= fh) la regolarità delle variazioni di
              lunghezza dei semidiametri, seguendo la proporzione sopra
              definita. Si tracci a partire da f,g,h
              delle linee di lunghezza qualunque, poi, parallelamente a fh, si tracci tn il
              cui punto medio è aa; in seguito, si
              tracci [image: \rho_4] il
              raggio del cerchio inscritto in un poligono isoperimetrico
              qualunque, per esempio un quadrato, np, e
              [image: r_4], no. Si tracci da g
              attraverso p una retta all’infinito, e,
              nello stesso modo, da h attraverso o una retta all’infinito. Si indichi con q il punto d’intersenzione. Poi si tracci
              attraverso q, parallelamemnte a fh, la linea sr, il
              cui punto medio bb. Si afferma che rq è r, il raggio del cerchio cercato la cui
              circonferenza è uguale ad ab.

            [16] Secondo la posizione di q, i rapporti
              fra i lati dei triangoli rettangoli simili esprimono sempre la
              medesima proporzione: [image: \frac{(r–\rho_3)}{(r_3–\rho_3)}=\frac{(r–\rho_4)}{(r_4–\rho_4)}=\frac{(r–\rho_n)}{(r_n–\rho_n)}].

            [17] Rispondendo a un’obiezione, Cusano riprende la dimostrazione
              della medesima proporzione sulla figura 2 che non è che una
              variante della precedente: si tratta in pratica di mostrare che
              la lunghezza r si rapporta alla lunghezza
              [image: \rho_3] e
              [image: \rho_4] secondo
              un rapporto costante. Se si nega e si sostiene che r è più piccolo, la sua estremità è al centro
              fra s e v, e
              coincide con il punto finale della linea g, in modo tale che rv
              è r. Allora, se vs
              si estende in modo tale che esso diventa uguale a rv e a rx, e se,
              ugualmente a rx, esso si estende tanto
              quanto fh, reso fh
              uguale rx, fz
              uguale a rx, si traccia la linea zx e dopo v le linee
              su g e h. Laddove
              esse intersecano la linea tn, si segnano
              2 e 9. Si prolunga
              tn fino a zx,
              cosicchè cc n risulti uguale a rx. Dico che se 2r si aggiunge a [image: \rho_3], l’eccesso è pari
              a bbv ([image: bbv=2r–\rho_3]) e allora [image: \rho_4] eccede [image: \rho_3] della lunghezza
              aa 2. Dunque, se a [image: \rho_4] si aggiunge aa p, allora a r si
              aggiunge a bb q. Da ciò, appare che il
              rapporto della somma è come quella fra bb
              u e aa 2. Si conosce la somma nel
              quadrato, si sa che essa è uguale ad aa
              p. Dunque, essa sarà nel cerchio uguale a bb q, e il rapporto fra aa
              p e bbq è lo stesso di quello fra
              aa 2 e bb v.

            [18] Da Euclides 1883–1888, I, 37 (I triangoli costruiti sulla stessa
              base e fra le medesime parallele sono uguali),
              l’uguaglianza delle superfici dei triangoli dipende dalla
              medesima base fra le medesime parallele. Da Euclides 1883–1888, VI, 4 (Fra i triangoli equiangoli, i lati
              attorno agli angoli uguali sono proporzionali; e i lati che
              sottendono gli angoli uguali sono omologhi), la proporzione
              delle rette corrisponde ai triangoli dai medesimi angoli.

            [19] Letteralmente «linea diametrale». In tutti gli scritti Cusano
              utilizza diamentro per indicare la diagonale. Cusano utilizza il
              termine «diameter» per indicare la diagonale, in base a una
              etimologia inesatta da «δύο» e
              «μετρεĩν» (che divide in due)
              ripresa da Bradwardine (1495b, II, 1, concl. 8: «linea diagonalis quae ducitur ab angulo ad angulum
              […]in quadrato vocatur diameter»). Una fonte chiara è Pisanus 1862, 2. Alla fine del Quattrocento si trova ancora il termine
              diametro per designare la diagonale del quadrato nell’opera di
              Luca Pacioli: «Si ha costume di parlare di diametro anche per i
              quadrati: ecco (è) perché, al fine di evitare qualunque
              equivoco, si dice diametro del cerchio e diametro del quadrato
              per differenziarli» (Pacioli 1509, I, 71, 133). Cfr. Da Novara 2005, X, 7, add.; Bradwardine 1495b, III, 4, concl. 3. Sul tema, cfr. Giusti e Maccagni 1994.

            [20] A partire da questo passaggio, Cusano utilizza l’espressione
              ambigua «additio super» che designa non l’operazione di
              aggiungere, ma il risultato di questa operazione, in qualche
              modo il «surplus»; si ritrova l’idea di eccesso, con cui si
              preferisce tradurre.

            [21] La proporzione fra la superficie del quadrato rispetto alla
              superficie del triangolo sarà come l’eccesso della superficie
              del cerchio rispetto alla superficie del triangolo, cioè come
              gf rispetto a cd:
              [image: \frac{gf}{cd}=\frac{(f_4–f_3)}{(f–f_3)}].
              Si ha dunque: [image: ab=ef=cd]; [image: (f_3–f_3)+(r_3–\rho_3)=(f_4–f_3)+(r_4–\rho_4)=(f–f_3)+(r_n–\rho_n)].
              Si segni su fg l’eccesso [image: \rho_4–\rho_3] ossia fh; e si segni una linea da b attraverso h fino
              alla linea cd, e il punto di contatto sia
              i. di è l’eccesso di [image: r–\rho_3]. Il rapporto tra
              fg e dc è uguale a
              quello tra fh e di: [image: \frac{(f_4–f_3)}{(f–f_3)}=\frac{(\rho_4–\rho_3)}{(r–\rho_3)}].
              La differenza di superficie fra i poligoni regolari e
              isoperimetrici e la superficie del triangolo [image: (f–f_3)] non risulta che
              la differenza [image: (\rho_n–\rho_3)].

            [22] Il titolo latino De sinibus et
                chordis somiglia al titolo dell’opera di Peurbach, Tractatus super propositiones
                Ptolemaei de sinubus et chordis (prima del 1461) che,
                secondo Taton 1957–1958, II, 15 è uno dei primi trattati di trigonometria scritti in
                Europa.

              [23] È necessario prendere il concetto di freccia nel senso più
                ordinario di retta perpendicolare al centro della corda
                dell’arco. Luca Pacioli la definisce così: «Si chiama freccia questa linea
                retta che parte dal punto mediano dell’arco di qualche
                porzione di cerchio per cadere in squadra nel mezzo della sua
                corda. Essa è detta freccia in relazione con la parte della
                circonferenza che si chiama arco, per somiglianza con l’arco
                materiale per il quale sono anch’esso usuali questi tre
                termini: corda, arco e freccia» (Pacioli 1509, 134).

              [24] «medietas duplae». Si tratta di un’espressione idiomatica
                intraducibile in sè, utilizzata anche ne Le
                trasformazioni geometriche e ne I
                complementi matematici (cfr. Cusanus 2010j, 9–8; Cusanus 2010i, 36). Vescovini 1972, nota10 sottolinea che si tratta di un termine della
                tradizione matematica medievale con cui Cusano allude alla
                dimostrazione dell’irrazionalità della [image: \sqrt{2}], spesso citata in
                Aristotele e menzionata anche in Oresme 1966, 160 e in Bradwardine 1495b, III, 1. Oresme chiama il rapporto [image: \frac{a^2}{b^2}] la metà di [image: \frac{a}{b}] (cfr. Oresme 1966, 454). La proportio proportionum,
                cioè la proporzione tra due rapporti [image: \frac{\sqrt{a}}{\sqrt{b}}] e [image: \frac{a}{b}] è espressa
                dal rapporto [image: \frac{1}{2}]. Se la proportio dupla è il quadrato, la metà,
                ossia la medietas duplae, è la radice.
                Cusano si riferisce a questa terminologia matematica di
                Bradwardine, di Oresme e di altri studiosi interessati agli
                incommensurabili e ai rapporti irrazionali. Cfr. Rommevaux 2003, 401–418; Pedersen 1953, 134ss..

              [25] Essendo il simbolo della radice quadrata un’invenzione
                posteriore a Cusano (Stifel 1544, f–225v), si è preferito non utilizzare tale simbolo nella
                traduzione.

              [26] Il calcolo finale sul valore di [image: \pi] può comprendersi così: siano
                [image: S_3], il lato
                del triangolo e [image: S_4], il lato del quadrato; [image: r_3=14]; [image: \rho_3=7]; il quadrato
                del semilato del triangolo è [image: 3\times49=147]; e [image: \frac{1}{2}S_3=\sqrt{147}]; [image: S_4], essendo il lato
                del quadrato, [image: \frac{1}{2}S_4=\rho_4=                 \frac{(6\times\sqrt{147})}{8}=\sqrt{(82+\frac{11}{16})}];
                [image: r_4=2\sqrt{(82+\frac{11}{16})}]. Si
                sottrae [image: \rho_4–\rho_3=[\sqrt{(82+\frac{11}{16})}]–\sqrt{49}=9,093–7=2,093]
                (il semidiametro dell’inscritto nel quadrato meno il
                semidiametro dell’inscritto nel triangolo). Si sottrae
                [image: r_3–r_4=\sqrt{196}–\sqrt{(165+\frac{6}{16})}=14–12,830=1,170]
                (il semidiametro del cerchio circoscritto al triangolo meno il
                semidiametro del cerchio circoscritto al quadrato). [image: \frac{(\rho_4–\rho_3)}{[(\rho_4–\rho_3)+(r_3–r_4)]}=\frac{2,093}{(2,093+1,170)}\approx\frac{2}{3}];
                [image: r=[{\frac{5}{3}}]\rho_3={1+\frac{(\rho_4–\rho_3)}{[(\rho_4–\rho_3)+(r_3–r_4)]}}\rho_3=[{1+\frac{2,093}{(2,093+1,170)}}]\rho_3=(\frac{5,356}{3,263})\rho_3=1,647\rho_3];
                [image: ab=6\sqrt{147}=6\times12,124=72,746=10,393\rho_3];
                [image: 2r=3,294];
                [image: \pi=\frac{ab}{2r}=\frac{10,393}{3,294}=3,154].

              [27] Cfr. Cusanus 2010i, 36–38.

              
  I complementi matematici. Al santissimo Papa
              Niccolò V. Niccolò Cusano, cardinale di San Pietro in
              Vincoli

              
          [image: link to parallel text] 

          1. È talmente grande la potenza del Tuo
          pontificato, Niccolò V, beatissimo padre[1], che coloro che hanno considerato attentamente la sua
          forza l’hanno paragonata al potere di rendere quadrato ciò che è
          tondo e di rendere circolare ciò che è quadrato, quasi che non si
          potesse dare una [forza] più grande. E poiché tu non solo possiedi
          la chiave e la potenza del sapere e della suprema gerarchia
          ecclesiastica, ma, grazie alla tua acutissima intelligenza, sei un
          eccellente maestro di impareggiabile fama in tutti i campi del
          sapere, sarai tu a giudicare tra tutti. Grazie alla tua
          straordinaria diligenza hai fatto moltissimo affinché gli scritti di
          tutti gli autori che possono essere reperiti, sia latini sia greci,
          pervenissero a noi tutti con la massima cura, così come non hai
          trascurato le opere di geometria, che erano state considerate dai
          nostri antenati degne di ogni onore[2].

          [image: link to parallel text] 2. E, infatti, nei giorni scorsi mi hai dato gli
          scritti di geometria del grande Archimede, presentati a te in greco e tradotti, grazie al tuo
          sostegno, in latino[3]; ho ritenuto che fossero così degni di stima che soltanto
          applicandomi molto avrei potuto dedicarmi ad essi con lo stesso
          impegno [che tu hai profuso]. È così che, studiando e impegnandomi,
          ho aggiunto ad essi qualche complemento che mi sono permesso di
          presentare alla Tua santità. Ritengo, infatti, che soltanto Tu sia
          degno di rendere note a tutti ciò che da tantissimo tempo è rimasto
          sconosciuto. E credo che da ciò si possa ricavare perfettamente non
          soltanto ciò che si può sapere e che sempre è stato detto intorno al
          problema della quadratura del cerchio, ma anche ciò che dà
          completezza a ogni perfezione matematica.

          
            [LIBRO PRIMO]

            [image: link to parallel text] 3. Secondo tutti coloro che si sono dedicati allo
            studio della geometria, nessuno più di Archimede si è avvicinato alla quadratura del cerchio. Questi,
            vedendo che ciò non poteva essere realizzato se non risolvendo una
            linea curva circolare in una retta[4], cercò di dimostrare il procedimento mediante la
            spirale[5]. Ma, poiché il rapporto[6] tra il moto di un punto dal centro lungo il semidiametro
            e il moto di un altro punto che, nello stesso tempo, si muove
            lungo la circonferenza — rapporto senza cui non potrebbe essere
            descritta la spirale — è uguale al rapporto tra il semidiametro e
            la circonferenza, [rapporto] che non è noto, ma che anzi è proprio
            ciò che si vuole trovare, da ciò si capisce perché [Archimede] non
            sia riuscito a conseguire tale risultato. Infatti, sarà più facile
            quadrare un cerchio che descrivere una spirale e tracciarne la
            tangente alla fine della rotazione. Resta dunque il fatto che,
            dagli scritti che ci ha lasciato Archimede, questa procedura rimane, ad oggi, ancora completamente
            oscura. Io, d’altra parte, nonostante abbia letto che molti si
            sono prodigati invano in questa ricerca, ho iniziato a fare dei
            tentativi per vedere se per caso questa difficoltà potesse essere
            superata per mezzo delle coincidenze, di cui ho scoperto la
            massima potenza in altri campi del sapere. E mi è sembrato che,
            data la sua possibilità [d’applicazione], che ovunque tutti
            riconoscono, si potesse conseguire facilmente questa conoscenza
            nello stesso modo, facendo praticamente ciò che segue.

            [image: link to parallel text] 4. Innanzitutto bisogna dire che, in una figura
            avente più angoli, cioè in un poligono che ha lati uguali[7], il punto equidistante dalla metà e dall’estremità dei
            lati si chiama centro, e la linea condotta da questo centro al
            punto medio del lato è il semidiametro del cerchio ad esso
            inscritto, ed è detta prima linea. E l’altra linea condotta dallo
            stesso centro fino all’estremità di un lato, cioè, a un angolo
            qualsiasi, è il semidiametro del cerchio circoscritto in essa ed è
            detta seconda linea. In ogni poligono queste due linee sono di
            diversa lunghezza e lo sono tanto più quanto più lungo è il lato.
            Infatti, il quadrato[8] della seconda linea include il quadrato della prima e
            con ciò il quadrato della metà del secondo lato, e questo perché
            il lato del triangolo rettangolo è opposto all’angolo retto, come
            dimostra Euclide[9].

            [image: link to parallel text] 5. E poiché la prima delle figure rettilinee[10] è il triangolo, in esso la prima e la seconda linea
            hanno lunghezze massimamente diverse. Tuttavia nel cerchio
            coincidono, poiché qui il centro si trova a uguale distanza dalla
            circonferenza; e infatti, la metà e l’estremità del lato
            coincidono, e c’è un angolo ovunque[11]. Tuttavia, nel triangolo la prima linea è la più corta,
            la seconda la più lunga. Nel quadrato[12] avente lo stesso perimetro[13], la prima linea è la più corta dopo la prima del
            triangolo e la seconda è la più lunga dopo la seconda del
            triangolo e così via. E poiché in tale quadrato la prima è più
            lunga della prima nel triangolo, se si moltiplica la prima nel
            quadrato per la metà del perimetro e, similmente, la prima nel
            triangolo per la stessa metà [del perimetro], è evidente che si
            ottengono diverse superfici che sono uguali ai poligoni[14](cfr. figura 1).

            [image: ]
Fig. 1
[image: link to parallel text] 6. Perciò l’eccesso di quella superficie, che
            risulta dal prodotto della prima del quadrato per la metà del
            perimetro, sulla superficie che risulta dal prodotto della prima
            del triangolo per la stessa metà del perimetro, è [uguale]
            all’eccesso dell’ampiezza[15] del quadrato sull’ampiezza del triangolo, e così, in
            tutti i poligoni, dall’eccesso della prima linea di un qualsiasi
            poligono sulla prima del triangolo isoperimetrico si trova
            l’eccesso dell’ampiezza di questo stesso poligono sull’ampiezza
            del triangolo. Inoltre, quanto minore è la differenza tra la prima
            e la seconda linea, tanto maggiore sarà l’eccesso della prima
            linea del poligono sulla prima del triangolo. E poiché nel cerchio
            la prima e la seconda coincidono, l’eccesso del semidiametro del
            cerchio isoperimetrico sulla prima del triangolo è massimo, e
            perciò l’ampiezza del cerchio è massima rispetto all’ampiezza del
            triangolo[16]. Perciò, la stessa linea retta, che nel triangolo è
            estesa lungo i tre lati per formare il perimetro di questa
            superficie, nel quadrato si estende lungo i quattro lati, formando
            il perimetro del quadrato, e [si estende] ancora di più nel
            pentagono. Se tuttavia si estende al massimo, tanto da non potersi
            estendersi ulteriormente, allora sarà la circonferenza del
            cerchio[17].

            [image: link to parallel text] 7. Da quanto detto è chiaro che se il triangolo
            ha l’ampiezza minima, la prima linea si differenzia al massimo
            dalla seconda, e se il cerchio ha l’ampiezza massima, la prima e
            la seconda linea coincidono, e così sarà, con le debite
            proporzioni, nei poligoni intermedi[18]. Di conseguenza, se si pone che l’eccesso dell'
            ampliezza del cerchio sul triangolo è uguale alla differenza tra
            la prima e la seconda linea nel triangolo, l’eccesso
            dell'ampliezza del cerchio sul quadrato sarà uguale alla
            differenza tra la prima e la seconda linea nel quadrato e così via
            di conseguenza: a un maggiore eccesso della prima linea dell’uno
            sulla prima linea dell’altro consegue infatti nel [poligono]
            maggiore una differenza tra la prima e la seconda [che è] minore
            rispetto alla differenza tra la prima e la seconda nel [poligono]
            minore. Da ciò, dati l’eccesso della prima di un qualsiasi
            [poligono] sulla prima del triangolo e la differenza tra la
            differenza della prima e la seconda del [poligono] più ampio e
            quella della prima e la seconda del triangolo, si può facilmente
            ottenere il semidiametro del cerchio isoperimetrico, la cui
            circonferenza cioè è uguale alla somma dei tre lati del triangolo
            o a quella dei quattro lati del quadrato.

            [image: link to parallel text] 8. Compreso ciò, la quadratura del cerchio
            risulta evidente. Infatti, se si moltiplica il semidiametro di
            questo cerchio isoperimetrico per la metà della circonferenza
            risulta un rettangolo[19] che non può essere né maggiore né minore della
            superficie del cerchio, come Archimede dimostra facilmente[20]. Si trasforma il rettangolo in quadrato, il cui lato
            sarà il medio proporzionale tra il semidiametro del cerchio e la
            semicirconferenza, come si legge in Euclide, VI, 9[21]. Sebbene tutte queste nozioni siano palesi, voglio
            tuttavia renderle perfettamente chiare anche a coloro che non sono
            esperti di matematica. Invece le figure aventi lati simili e
            perimetri uguali, di cui parlerò, da alcuni sono definite poligoni
            equiangoli e isoperimetrici, conformemente alla terminologia
            greca[22].

            [image: ]
Fig. 2
[image: link to parallel text] 9. Se si moltiplica una linea retta per una linea
            retta, si ottiene una figura di quattro angoli retti e se la si
            moltiplica per una doppia linea, si ottiene una figura doppia, e
            così di seguito. Se si traccia una linea retta da un angolo
            all’altro, questa sarà la diagonale[23] perché li divide in due (cfr. figura 2).

            Se si moltiplica ab per bc, si ottiene il quadrato ABCD avente quattro
            angoli retti. Se si moltiplica ab per be, che è il doppio di bc, si ottiene il rettangolo ABEF che è il
            doppio di ABCD. E senza dubbio ac è la
            diagonale, così come lo è anche ae.

          
          
            Prima proposizione

            [image: link to parallel text] 10. Il prodotto della prima linea per la metà del
            perimetro è uguale a due poligoni[24].

            Sia ABCD un quadrato di quattro angoli retti e quattro lati
            uguali. In esso è inscritto un cerchio attorno al centro e in modo che tocchi i quattro lati del
            quadrato nel punto medio. Si tracci da e
            fino al punto in cui il cerchio tocca ab la
            linea ef, che è la prima poiché è il
            semidiametro del [cerchio] inscritto, si tracci la linea eb e anche la linea da e
            fino al punto in cui il cerchio tocca il lato bd e sia questa eg. Si
            raddoppi fb in modo da ottenere fh, e, allo stesso modo, si raddoppi eg così da ottenere ei.
            Si chiuda il rettangolo con la linea hi e
            si tracci la diagonale eh. Da quanto
            premesso è chiaro che i triangoli EFB e EBH sono uguali. Il primo,
            infatti, è la metà del primo quadrato, poiché eb è la diagonale, e il triangolo EFH è la metà
            del secondo rettangolo – che è il doppio del primo [rettangolo] –
            poiché eh è la diagonale (cfr. figura 3).

            [image: ]
Fig. 3
[image: link to parallel text] 11. Il triangolo EBH sarà, dunque, uguale a EFB.
            Si raddoppino le linee fh e ei, e sia fk il doppio
            di fh ed el il
            doppio di ei; si chiuda il rettangolo con
            la linea lk. Poiché il triangolo EFB è
            l’ottava parte del quadrato ABCD, il rettangolo EFKL sarà uguale
            al quadrato ABCD. Ma fk è uguale alla metà
            del perimetro del [quadrato] ABCD, ossia è uguale alla [somma di]
            due lati del quadrato, e la prima linea ef
            è moltiplicata per la metà del perimetro, di conseguenza la
            proposizione è valida. Come nel quadrato, ciò è evidente nello
            stesso modo in tutti i poligoni: tutti, infatti, si risolvono in
            tanti doppi triangoli rettangoli quanti sono i lati; e così si
            procede nello stesso modo come sopra detto.

          
          
            Seconda proposizione

            [image: link to parallel text] 12. Il perimetro di un poligono circoscritto a un
            cerchio è maggiore della circonferenza del cerchio, e lo è tanto
            più quanto meno lati esso avrà; accadrà il contrario se [il
            poligono] sarà inscritto nel cerchio (cfr. figura 4).

            [image: ]
Fig. 4
Siano circoscritti al cerchio il triangolo ABC e l’esagono
            DEFHIK e dal centro g si tracci il
            semidiametro del cerchio ga che sarà la
            prima [linea] del triangolo e dell’esagono. Se dunque si
            moltiplica ag per la metà del perimetro del
            triangolo si ottiene un rettangolo uguale al triangolo. La
            superficie, ossia l’area[25] del triangolo, include l’area del cerchio inscritto.

            [image: link to parallel text] 13. L’area del cerchio sarà quindi minore, perché
            la circonferenza del cerchio è minore del perimetro del triangolo,
            e così anche il perimetro dell’esagono è minore del perimetro del
            triangolo e la circonferenza del cerchio è minore del perimetro
            dell’esagono; di conseguenza la proposizione è valida. Nei
            poligoni inscritti accade il contrario, giacché l’area del cerchio
            è maggiore. Di conseguenza il rettangolo uguale[26] ad esso si genera moltiplicando il semidiametro per una
            linea, che sarà più lunga della metà del perimetro di qualsiasi
            poligono inscrivibile. L’area del cerchio, quindi, include l’area
            dell’esagono inscritto e quella dell’esagono l’area del triangolo.
            La circonferenza del cerchio sarà dunque quella maggiore, poi
            verrà il perimetro dell’esagono, quindi quello del triangolo, e
            così via in tutti gli altri poligoni.

          
          
            Terza proposizione

            [image: link to parallel text] 14. Tra linee rette e linee circolari la minore è
            quella che è sottesa all’altra, e tra linee diverse, la linea
            sottesa, che è minore, è quella che meno è superata da quella alla
            quale è sottesa[27].

            La terza parte della circonferenza del cerchio, che è sottesa
            al lato del triangolo, è minore del lato e, allo stesso modo, la
            sesta parte della stessa circonferenza che è sottesa al lato
            dell’esagono è minore [del lato]. Poiché in questo caso il
            perimetro dell’esagono è minore del perimetro del triangolo, di
            conseguenza la sesta parte della circonferenza del cerchio è
            superata, in proporzione, dal lato dell’esagono meno di quanto la
            terza parte [della circonferenza del cerchio] è superata dal lato
            del triangolo. Così, la terza parte della circonferenza del
            cerchio supera, in modo proporzionale, il lato del triangolo
            inscritto più di quanto la sesta parte superi il lato dell’esagono
            inscritto.

          
          
            Quarta proposizione

            [image: link to parallel text] 15. Il cerchio avente la circonferenza uguale al
            perimetro di un poligono è maggiore del cerchio inscritto in esso
            e minore di quello circoscritto, ed è tanto più simile[28] ad essi quanto più sono i lati del poligono.

            È evidente. Infatti, il lato del poligono è minore dell’arco al
            quale è sotteso, che è l’arco [della circonferenza] del cerchio
            circoscritto, e maggiore dell’arco che lo sottende, che è l’arco
            [della circonferenza] del cerchio inscritto. E poiché [il cerchio]
            inscritto e quello circoscritto sono tanto più simili quanto più
            sono i lati del poligono, allora saranno così anche più simili al
            cerchio isoperimetrico.

          
          
            Quinta proposizione

            [image: link to parallel text] 16. Tra un qualsiasi poligono inscritto e un
            cerchio può cadere un numero infinito di poligoni maggiori del
            poligono [dato] e minori del cerchio. Allo stesso modo, tra un
            poligono circoscritto e un cerchio, [può cadere un numero infinito
            di poligoni] minori del poligono e maggiori del cerchio.

            Ciò è evidente dalla divisione all’infinito di ciò che è
            continuo mediante parti proporzionali[29]. Data, infatti, la corda di un qualsiasi arco, la corda
            del semiarco sarà minore. Così all’infinito. Le corde sono i lati
            dei poligoni [inscritti]. Lo stesso vale per i lati dei poligoni
            circoscritti, perché, se si dà il lato di un poligono circoscritto
            a cui è sotteso l’arco, si darà il lato minore al quale è sotteso
            il semiarco e così all’infinito.

          
          
            Sesta proposizione

            [image: link to parallel text] 17. [L’area del] rettangolo che si ottiene
            moltiplicando il semidiametro per la semicirconferenza del cerchio
            non è né maggiore né minore dell’area del cerchio[30].

            È evidente da quanto detto sopra. Infatti, il perimetro di un
            poligono circoscrivibile è maggiore della circonferenza del
            cerchio, così anche la sua area è maggiore dell’area del cerchio.
            Il perimetro di un poligono inscrivibile è minore della
            circonferenza del cerchio, e lo stesso accade per l’area. Quindi,
            il prodotto del semidiametro del cerchio per la metà della sua
            circonferenza è maggiore dell’area di ogni poligono inscrivibile e
            minore dell’area di ogni poligono circoscrivibile. E, poiché, data
            un’area maggiore di [quella di] un poligono inscritto e minore di
            [quella del] del cerchio, si può sempre dare un poligono
            inscrivibile [avente un’area] maggiore, allo stesso modo, data
            un’area maggiore di [quella del] cerchio, si può sempre dare un
            poligono circoscrivibile [avente un’area] minore. Quindi la
            proposizione è evidente.

          
          
            Settima proposizione

            [image: link to parallel text] 18. L’ampiezza del cerchio supera quella di tutti
            i poligoni isoperimetrici[31].

            È evidente. Infatti, in tutti i poligoni la prima linea è
            minore della prima linea del cerchio e il perimetro è lo stesso in
            tutti. Quindi, moltiplicando la prima linea del cerchio per la
            metà del perimetro, risulterà [un’ampiezza] maggiore di quella di
            qualsiasi poligono isoperimetrico.

          
          
            Ottava proposizione

            [image: link to parallel text] 19. L’ampiezza del triangolo isoperimetrico è
            l’ampiezza minima.

            È evidente, dal momento che ha il lato maggiore. Dunque, esso
            supera la circonferenza [del cerchio] inscritto più di qualsiasi
            altro poligono. Di conseguenza, il cerchio inscritto in esso è
            minore di tutti gli inscritti; la sua prima linea è la linea
            minima e, quindi anche l’ampiezza è l’ampiezza minima.

          
          
            Nona proposizione

            [image: link to parallel text] 20. Più lati ha un poligono, più esso è
            esteso[32].

            È evidente, perché, avendo i lati più corti ed essendo il
            quadrato della seconda linea uguale alla somma del quadrato della
            prima più quello della metà del suo lato, allora la prima e la
            seconda linea differiscono meno l’una dall’altra e sono più simili
            alla prima del cerchio isoperimetrico. Infatti, il lato corto è
            superato di meno dall’arco.

          
          
            Decima proposizione

            [image: link to parallel text] 21. Nel poligono più esteso è necessario che la
            prima linea sia più lunga e la seconda più corta.

            Si deduce da quanto premesso; infatti, essendo il cerchio
            inscritto in esso più simile al cerchio isoperimetrico, perché è
            più esteso e il cerchio isoperimetrico è il più esteso, allora la
            prima linea di quel poligono è più lunga e il suo lato è minore.
            Infatti, minore è il lato, meno è superato dall’arco, e, di
            conseguenza, più si avvicina al cerchio isoperimetrico. E poiché
            il lato è minore, allora la seconda linea differisce meno dalla
            prima e quindi è più simile alla prima linea del cerchio
            isoperimetrico; sarà, dunque, più corta [nel poligono] più esteso.
            Questa è la proposizione principale per scoprire ciò che
            cerchiamo.

          
          
            Undicesima proposizione

            [image: link to parallel text] 22. Se si pone l’eccesso della superficie del
            cerchio sulla superficie del triangolo uguale alla differenza tra
            la prima e la seconda linea del triangolo, allora l’eccesso della
            superficie del cerchio sulla superficie del poligono intermedio
            tra il triangolo e il cerchio sarà uguale alla differenza tra la
            prima e la seconda linea di esso; e se si pone l’eccesso uguale
            alla metà (o a un’altra parte) della differenza tra la prima e la
            seconda linea nel triangolo, allora sarà così anche nei [poligoni]
            intermedi[33].

            Si ponga, per esempio, che l’eccesso della superficie del
            cerchio sulla superficie del triangolo sia uguale alla differenza
            tra la prima e la seconda [linea][34] e, numericamente parlando, siano la prima [linea] del
            triangolo [uguale a] 7, e la seconda [uguale a] 14. La differenza
            sarà 7. La prima [linea] del cerchio isoperimetrico sarà 14, dato
            che essa è maggiore della prima del triangolo della differenza,
            che è 7. Dico che la prima [linea] del cerchio sarà maggiore della
            prima [linea] di qualsiasi poligono intermedio di una quantità
            pari alla differenza tra la prima e la seconda [linea] di esso.
            Come nel quadrato, in cui la differenza è 4, la prima [linea] del
            cerchio eccede la prima del quadrato di 4. La prima [linea] del
            quadrato sarà, quindi, 10. Se dirai che il quadrato è più esteso
            del cerchio, allora la sua prima [linea] sarà più lunga. Sia essa
            uguale a 11; aggiungendo ad essa la differenza, otterrai 15. E
            poiché 15 supera 14, [il quadrato] sarà, da quanto premesso, meno
            ampio e dunque contemporaneamente più esteso e meno esteso.
            Accadrà la stessa cosa, se dirai che il quadrato è meno esteso. Se
            per esempio [la prima linea] è pari a 9, la seconda sarà 13,
            minore di 14, e di conseguenza, da quanto premesso, il quadrato
            sarà più esteso. Così risulterà contemporaneamente più esteso e
            meno esteso, il che è contraddittorio. Questa dimostrazione vale
            per tutti [i poligoni].

            [image: link to parallel text] 23. Considera che, se un poligono [alla prima
            linea] aggiunge una qualche parte[35] di freccia, affinché risulti la prima [linea] del
            cerchio, tutti [i poligoni] aggiungono una [lunghezza] simile[36]. Per capirlo chiaramente, procedi così. È evidente,
            dalle premesse, che se la prima [linea] del poligono più esteso è
            maggiore di quella di uno meno esteso, essa sarà sempre minore
            della prima [linea] di qualche altro poligono, poiché tra un
            qualsiasi poligono, che è minore del cerchio, [e il cerchio], se
            ne possono dare infiniti altri più grandi. E così la prima [linea
            del poligono] è sempre minore della prima [linea] del cerchio.
            Allo stesso modo, se la prima [linea] di un poligono più esteso è
            minore della prima [linea] di uno meno esteso, essa sarà maggiore
            della seconda linea di qualche altro poligono e, in questo modo,
            maggiore della prima [linea] del cerchio. Dunque, se porrai che
            dalla somma di una parte di freccia con la prima [linea] del
            poligono risulta la prima [linea] del cerchio isoperimetrico,
            allora sarà necessario che ciò accada in qualsiasi poligono
            intermedio, aggiungendo alla prima [linea] la parte avente con la
            freccia un rapporto simile.

            [image: link to parallel text] 24. Per esempio, se aggiungendo due terzi della
            freccia del triangolo alla prima [linea] di questo si ottiene la
            prima [linea] del cerchio [isoperimetrico], lo stesso accadrà nel
            pentagono, nell’esagono e in tutti gli altri poligoni. Infatti, se
            dicessi che in qualche poligono la somma risultante è di più o di
            meno, ciò accadrà necessariamente perché è più esteso [rispetto al
            triangolo]. Quindi, se dicessi che è maggiore, ciò non è
            possibile; infatti, sarebbe necessario che fosse minore della
            prima [linea] del cerchio, e poiché la prima [linea] del cerchio è
            uguale alla somma della prima [linea] del triangolo e della
            suddetta parte di freccia, la somma sarebbe contemporaneamente
            maggiore e minore. Similmente, se dicessi che è meno esteso,
            sarebbe necessario dire che essa è contemporaneamente minore e
            maggiore.

            [image: link to parallel text] 25. Da ciò si evince pure chiaramente che, se due
            poligoni si rapportano in modo che la somma tra la parte simile di
            freccia e la prima [linea] di ciascuna dia lo stesso risultato,
            ciò accadrà necessariamente in tutti [i poligoni][37]. Infatti, [poni il caso in cui] tra questi due poligoni
            ce ne siano altri, come tra il triangolo e il pentagono c’è il
            quadrato: in tal caso, è necessario che ciò che vale nel triangolo
            e nel pentagono valga anche nel quadrato. Infatti, se dicessi che
            la linea risultante [dalla somma] è maggiore [di quella nel
            triangolo] per la maggiore estensione del quadrato rispetto al
            triangolo, allora essa sarebbe anche minore [di quella nel
            pentagono], perché l’estensione del quadrato è minore di quella
            del pentagono. Dunque, se dicessi che, per la minore estensione
            [del quadrato rispetto al triangolo] la linea risultante [dalla
            somma] è minore, allora essa sarebbe anche maggiore e questo è
            impossibile. Lo stesso accadrebbe nel caso in cui i due poligoni
            si susseguissero senza che tra loro ci sia un poligono intermedio,
            come nel caso del triangolo e il quadrato, e nel caso in cui lo
            negassi nel pentagono. Allora, se dicessi che [la linea
            risultante] è maggiore a causa della maggiore estensione del
            pentagono, ciò non si potrebbe dire; infatti, il quadrato risulta
            più esteso dove [la linea risultante] non è maggiore; a maggior
            ragione, essa non sarà maggiore nel pentagono, ma piuttosto
            minore. Se dicessi che essa è minore sarebbe [ugualmente]
            sbagliato, dal momento che nel quadrato non è minore. È dunque
            evidente che ci sarebbe una contraddizione se negli altri poligoni
            non si ottenesse lo stesso risultato.

            [image: link to parallel text] 26. Da ciò segue che, se in due poligoni [dalla
            somma] tra una parte simile [di freccia] e la prima [linea] di
            ciascuno risulta la stessa linea nel suddetto modo, essa sarà il
            semidiametro del cerchio isoperimetrico. Infatti, poiché nel
            cerchio isoperimetrico la prima e la seconda linea sono un’unica
            linea, allora, se alle prime [linee] dei poligoni si aggiunge una
            qualche parte di freccia — sia che le linee aumentino sia che
            diminuiscano, sia che restino le stesse — l’ultima sarà sempre la
            prima del cerchio isoperimetrico. Per esempio, se aggiungo alle
            prime un quarto di freccia, allora esse saranno sempre maggiori e
            la massima sarà l’ultima e la prima del cerchio. Se aggiungo i tre
            quarti, saranno sempre minori e l’ultima sarà la minima e la prima
            del cerchio. E se aggiungo una parte tale che in due poligoni
            risulti la stessa linea, allora sarà così in tutti gli altri.
            Così, essendo l’ultima uguale alla prima, sarà una prima [linea]
            qualsiasi del cerchio. Da qui, è anche evidente che la superficie
            del cerchio supera la superficie di un qualsiasi poligono di una
            [lunghezza pari alla] linea che in quel [poligono] mantiene lo
            stesso rapporto con la propria freccia. E così, un qualsiasi
            poligono più esteso supera tutti i poligoni meno estesi di una
            [lunghezza pari alla] linea che, in un qualsiasi poligono, ha lo
            stesso rapporto con la propria freccia.

            [image: link to parallel text] 27. Si potrebbe dimostrare anche in un altro modo
            (cfr. figura 5).

            [image: ]
Fig. 5
Sia ab la seconda linea del triangolo e
            sia essa divisa [in due] da c; traccia da
            a, b e c le
            perpendicolari uguali a bc e chiudi la
            figura con la linea def. Poiché la prima
            linea del triangolo è ac, la prima del
            cerchio isoperimetrico sarà maggiore di fe:
            sia essa uguale a fh e sia eh due terzi di ed. Da
            h traccia la parallela a bd e sia questa hi;
            traccia ora la linea ch. È chiaro che se
            fh è la prima [linea] del cerchio
            isoperimetrico, allora le prime [linee] dei poligoni intermedi
            saranno maggiori di ac e minori di fh e che la prima [linea] del poligono più
            esteso sarà più simile a fh. È anche chiaro
            che, come la somma di ai e ih è uguale alla somma della prima [linea] del
            triangolo più la differenza tra la prima e la seconda di esso, che
            è la freccia del suo lato, e i due terzi della freccia, così,
            nello stesso modo, nei poligoni intermedi possono essere tracciate
            linee parallele ad ai, che terminano su ih e af. Queste, unite
            alla linea restante ih, sono uguali alla
            [somma] tra la prima linea del poligono intermedio, la freccia e i
            due terzi della freccia di ognuna, come è stato detto nel
            triangolo. Ed è cosa nota che meno esteso è il poligono, più lunga
            sarà la linea risultante da queste linee prese insieme, dal
            momento che il [poligono] meno esteso ha il lato maggiore e,
            quindi, la freccia, maggiore. Così queste due linee saranno le più
            lunghe nel triangolo, e le più corte nel cerchio isoperimetrico,
            giacché il cerchio non ha lati e, quindi, neppure frecce, per cui
            le due linee nei poligoni saranno un’unica linea nel cerchio.

            [image: link to parallel text] 28. Pertanto, dico che se tracci da h verso i la freccia di
            un poligono intermedio e dall’estremità della freccia tiri la
            linea parallela ad ai, allora la linea ch la taglierà in due parti, di cui la minore
            sarà una parte della freccia, e la maggiore la prima [linea] del
            poligono. Per esempio, sia hk la freccia
            del quadrato, si tracci da k la linea
            parallela a hf, e sia questa kl, e, nel punto in cui ch la taglia, poni m.
            Dico che km sarà due terzi di hk, il che è cosa nota da sé: infatti mh sta a kh come ci a ih. E dico che ml sarà la prima linea del quadrato. Se lo
            negassi, dicendo che il quadrato è o più esteso o meno esteso, per
            esempio più esteso, allora la sua prima [linea] deve essere
            maggiore di lm e dunque la somma di lk e kh è minore della
            somma della prima linea del quadrato, della sua freccia e dei due
            terzi della freccia, il che implica contraddizione. Infatti, se il
            quadrato deve essere più esteso, come tu dici, è necessario che la
            somma di lk e hk
            superi la somma della prima [linea] del quadrato, della freccia e
            dei due terzi di essa. Sarebbe altrettanto contraddittorio se
            dicessi che il quadrato è meno esteso. Infatti, in tal caso, è
            necessario che lm sia minore e che la somma
            di lk e kh sia
            maggiore della somma della prima [linea] del quadrato, della
            freccia e dei due terzi di essa. Lo stesso accade negli altri
            poligoni. Di conseguenza, è evidente che, se la prima [linea] del
            cerchio isoperimetrico supera la prima del triangolo di una parte
            aliquota[38] della freccia del triangolo, essa supera anche la prima
            linea di qualsiasi poligono intermedio della parte aliquota simile
            della freccia di questo poligono, e dire qualcosa di diverso
            implica contraddizione.

          
          
            Dodicesima proposizione

            [image: link to parallel text] 29. Il rapporto tra l’eccesso della superficie di
            un cerchio sulla superficie di un triangolo isoperimetrico e
            l’eccesso della superficie di un poligono intermedio sulla
            superficie dello stesso triangolo è uguale a quello tra la freccia
            del triangolo e la linea risultante dalla differenza tra la
            freccia del triangolo e la freccia del poligono intermedio[39].

            Se si pone l’eccesso della superficie del cerchio sulla
            superficie del triangolo pari a 7, [l’eccesso del]la superficie
            del quadrato sulla superficie del triangolo corrisponderà alla
            linea risultante dalla differenza tra la freccia del triangolo e
            la freccia del quadrato. Per esempio, se la freccia fosse uguale a
            4, la superficie del quadrato sarà pari a 3. Questo corollario è
            evidente da quanto detto.

          
          
            Tredicesima proposizione

            [image: link to parallel text] 30. Conoscendo l’eccesso della superficie di un
            qualsiasi poligono intermedio sulla superficie del triangolo
            isoperimetrico si conosce la superficie del cerchio
            isoperimetrico.

            È chiaro che, se si conosce il rapporto, allora, una volta
            conosciuto un eccesso, si conoscerà anche l’altro. Ma poiché
            l’eccesso nel quadrato, nel pentagono, nell’esagono e in ogni
            altro poligono intermedio può essere conosciuto per mezzo della
            prima linea del triangolo e del poligono intermedio, allo stesso
            modo si conoscerà anche l’eccesso del cerchio isoperimetrico.

            [image: link to parallel text] 31. Trovare una [linea] curva circolare
            uguale[40] a una [linea] retta data[41](cfr. figura 6).

            [image: ]
Fig. 6
Sia ab la linea retta, e, a partire da
            essa, siano costruiti un triangolo e un quadrato, come premesso;
            sia ef la seconda linea del triangolo e il
            lato del quadrato EFGH. Dividi [ef] a metà
            attraverso la linea ik, traccia la linea
            ig e cerca il punto in cui ig e fg abbiano una
            distanza [l’una dall’altra] pari alla differenza tra la prima e la
            seconda [linea] del quadrato, e traccia [per questo punto] la
            linea parallela a ef, ossia ln e sia lm la suddetta
            differenza. Segna su nl la prima del
            quadrato, ossia no, traccia da i attraverso o la linea
            verso gh e, dove essa la taglia, poni p. È chiaro, da quanto detto prima, che hp è il semidiametro del cerchio la cui
            circonferenza è uguale al perimetro del triangolo e del quadrato,
            cioè, della linea retta ab, che è quanto si
            voleva trovare[42].

            [image: ]
Fig. 7
[image: link to parallel text] 32. Trovare una linea retta uguale a una [linea]
            curva circolare data (cfr. figura 7).

            Se vuoi ottenere ciò in breve tempo, disegna un angolo
            attraverso il quale troverai [ciò che cerchi] in questo modo: al
            semidiametro hp del suddetto cerchio
            unisci, al centro, la perpendicolare ab e,
            alla sua metà q, traccia pq. Otterrai così l’angolo hpq. Costruiscilo in metallo o in legno, e dal
            momento che vuoi risolvere una linea circolare in una linea retta,
            traccia una linea di lunghezza indefinita perpendicolare al
            semidiametro passante per il centro, e considera l’angolo compreso
            tra il semidiametro e la circonferenza, in modo che il lato minore
            si trovi sul semidiametro e il lato maggiore dell’angolo tagli
            sulla linea di lunghezza indefinita una parte uguale alla
            semicirconferenza.

            [image: link to parallel text] 33. Trovare un quadrato uguale a un cerchio dato
            (cfr. figura 8).

            Procedi nel seguente modo[43]: per mezzo di Euclide, VI, 9, calcola il medio proporzionale tra hp e la metà di ab, e
            questo è il lato del quadrato; traccia la metà di questo lato
            sulla perpendicolare a hp che passa per il
            centro e sia questa hr: tracciando pr, otterrai l’angolo hpr. Costruiscilo in metallo o in legno e, nel
            modo suddetto, potrai quadrare velocemente tutti i cerchi.

            [image: ]
Fig. 8
[image: link to parallel text] 34. Trovare un cerchio uguale a un quadrato
            dato.

            Dalla metà del lato traccia la perpendicolare e riporta su di
            essa l’angolo appena descritto; alzala fino al punto in cui il
            lato più lungo dell’angolo cade sull’estremità del lato del
            quadrato; la linea tracciata [dal piede della perpendicolare] fino
            al vertice dell’angolo sarà il semidiametro del cerchio uguale al
            quadrato. Tutto ciò è evidente, perché in tutti i cerchi il
            rapporto tra i semidiametri e la circonferenza è lo stesso di
            quello [tra i semidiametri] e i lati del quadrato.

            [image: link to parallel text] 35. Senza questi due angoli, potrai [trovare un
            cerchio uguale a un quadrato dato] da quanto premesso, essendo il
            rapporto tra l’eccesso del semidiametro del cerchio sul
            semidiametro [dell’inscritto] nel triangolo uguale a quello. Per
            esempio, se vuoi trasformare la circonferenza di un cerchio dato S
            in una linea retta, prendi una linea qualsiasi, per esempio ab, e trova, in base a quanto premesso, una
            circonferenza della stessa lunghezza. Poi, traccia una linea, hp, perpendicolare a un’altra, tv, e sia hp il
            semidiametro del cerchio; riporta su di essa hk, il semidiametro del cerchio inscritto nel
            triangolo isoperimetrico, tracciando le linee rette da t attraverso h e k. Traccia, poi, il semidiametro del cerchio
            dato S parallelo a hp, compreso tra la
            linea tv e quella che da t r passa per p, e sia
            esso xy. Segna con z
            il punto in cui xy è tagliata dalla linea
            che parte da t e passa per k. È chiaro che yz è il
            semidiametro del cerchio inscritto nel triangolo isoperimetrico al
            cerchio S. In questo modo troverai la linea retta cercata
            (cfr. figura 9).

            [image: ]
Fig. 9
[image: link to parallel text] 36. Da quanto stabilito sopra, si potrà indagare
            ciò che in geometria è rimasto finora sconosciuto. La perfezione
            dell’arte dei seni e delle corde non era conosciuta; nessuno
            poteva conoscere la corda di un arco di un grado, di due, di
            quattro e così via; adesso ciò è possibile[44]. È evidente che, per ottenere il semidiametro del
            cerchio isoperimetrico, ogni poligono regolare[45] aggiunge alla prima [linea] una parte uguale alla
            differenza tra la prima e la seconda linea, e similmente, ogni
            eccesso, di cui la prima linea di un qualsiasi [poligono] supera
            la prima [linea] del triangolo, e l’eccesso di cui la seconda
            [linea] del triangolo supera la seconda [linea] di un altro
            [poligono], mantengono in tutti [i poligoni] sempre lo stesso
            rapporto. Da questi si determina l’arte generale dei seni e delle
            corde, senza la quale la geometria è rimasta sin qui incompleta.
            Ma [se ti domandi] come si possa realizzare praticamente
            quest’arte, mediante numeri approssimati, procederai in questo
            modo. In realtà ciò è impossibile perché la metà della doppia
            proporzione[46] non può essere espressa numericamente, non essendo il
            risultato né pari, né dispari[47].

            [image: link to parallel text] 37. Sia dunque il semidiametro del cerchio
            circoscritto al triangolo pari a 14. Il semidiametro
            dell’inscritto sarà 7 e il suo quadrato 49, il quadrato della metà
            del lato del triangolo sarà tre volte di più, cioè 147, e il
            quadrato del semidiametro del circoscritto quattro volte di più,
            cioè 196. La metà del lato del quadrato sarà, dunque, la radice di
            [image: \frac{9}{16}] del
            quadrato della metà del lato del triangolo, cioè la radice di 82
            più [image: \frac{11}{16}]
            e tale sarà il semidiametro del suo inscritto. Il semidiametro del
            circoscritto sarà anche la radice del numero doppio, cioè 165 più
            [image: \frac{6}{16}]. Se
            ora sottrai la radice di 49 dalla radice di 82 più [image: \frac{11}{16}], la
            differenza sarà l’eccesso del semidiametro dell’inscritto nel
            quadrato sul semidiametro dell’inscritto nel triangolo, che sarà
            qualcosa più di 2. Se sottrai la radice di 165 più [image: \frac{6}{16}] dalla radice
            di 196 — differenza il cui risultato sarà poco più di 1[48]—, ottieni gli eccessi [ossia le differenze delle prime
            da un lato e delle seconde dall’altro], e dal loro rapporto può
            essere trovato tutto il resto. Infatti, se sottrarrai questi
            eccessi dalla freccia del lato del triangolo, cioè da 7, resterà
            la freccia del quadrato. Se, dunque, ora tu dividerai per 7,
            secondo il rapporto delle differenze sopra indicato, e aggiungerai
            il maggiore al semidiametro dell’inscritto nel triangolo, otterrai
            il semidiametro del cerchio isoperimetrico.

            [image: link to parallel text] 38. Dal quadrato del lato del triangolo o del
            quadrato, potrai anche conoscere il quadrato del lato di qualsiasi
            poligono dato; da ciò e dal rapporto degli eccessi si arriva alla
            freccia e al semidiametro dell'inscritto e si conosce così l’arco
            della corda. E questa è la massima perfezione della geometria, a
            cui gli antichi, per quanto io abbia letto, non sono pervenuti.
            Ora è completa anche l’arte delle trasformazioni geometriche che
            ho descritto precedentemente, in maniera rapida ma sufficiente, a
            proposito della quadratura del cerchio[49].

            [image: link to parallel text] 39. Per trasformare ora velocemente il lato di un
            qualsiasi poligono in una linea curva, potrai costruire uno
            strumento di due angoli (cfr. figura 10). Sia ab il lato del triangolo, la cui freccia, ossia
            la differenza della prima e della seconda linea (che è la stessa
            cosa), è cd e sia ce
            l’eccesso del semidiametro del cerchio isoperimetrico sulla prima
            [linea] del triangolo. Ora, se tracci una linea che parte da a e passa per e, e
            un’altra che parte da a e passa per d, si formeranno due angoli intorno ad a. Riporta, quindi, [gli angoli] bae e bad su uno
            strumento di metallo, e applicali a tutti i poligoni in modo che,
            ora, nel triangolo, risulti che il lato di questi ab si trovi sul lato del poligono e il lato ad tocchi l’estremità della freccia. Così, il
            lato ae mostra quanto bisogna aggiungere
            alla prima [linea] di questo poligono per ottenere il semidiametro
            del cerchio isoperimetrico. Descritto, quindi, l’arco in questo
            modo e tracciati i raggi[50] dal centro verso l’estremità del lato, l’arco che cade
            tra le linee risulterà uguale al lato dato. La verità di quanto
            detto consegue dall’uguaglianza del rapporto tra la parte che
            bisogna aggiungere alla prima del [poligono] affinché derivi il
            semidiametro del cerchio isoperimetrico, e l’intera differenza tra
            la prima e la seconda linea del suddetto [poligono], differenza
            che è chiamata freccia[51].

            [image: ]
Fig. 10
[image: link to parallel text] 40. Ora, da quanto detto, è palese che, poiché
            una qualsiasi linea retta può essere il lato di un triangolo, di
            un quadrato, di un pentagono e così via, allo stesso modo, data
            una linea retta, si potranno dare innumerevoli curve uguali e,
            grazie ad esse, si potranno trovare angoli che si rapportano tra
            di loro come le linee date, cioè come il lato e la diagonale di un
            quadrato o il diametro di un cerchio e la sua circonferenza e così
            in tutti i poligoni, [e si potranno trovare] anche superfici che
            si rapportano l’una con l’altra come le linee date. Da ciò, si
            potrà scoprire ciò che non solo era rimasto nascosto in geometria,
            ma anche ignorato nel campo della musica e degli strumenti
            musicali, e così, a colui che vorrà applicare ancor di più la
            propria mente, ciò che non era conoscibile né conosciuto in
            geometria si paleserà chiaramente. È per questa ragione che tale
            scoperta merita di portare il nome di complemento ed è degna di essere portata alla
            conoscenza di tutti, affinché possano ammirare la tua grandezza,
            Padre Santo, di cui tutti i cattolici si stupiscono a tal punto
            che, conformemente all’espressione d’ammirazione che si usa nei
            confronti di un padre, ti chiamano Papa[52].

          
          
          
            [LIBRO SECONDO]

            [image: link to parallel text] 42. A proposito delle trasformazioni delle
            superfici l’una nell’altra aggiungo ora alcune mie scoperte che,
            come le precedenti, dedico alla tua santità, a te che primeggi su
            tutti e che sei il solo ad essere degno che tutto ti sia
            rivelato.

            [image: link to parallel text] 43. Considero la linea come la figura del
            movimento di un punto. Ora, se essa fosse una [linea] retta e si
            muovesse tenendo fissa una delle estremità, questo movimento
            sarebbe rappresentato in modo adeguato da un triangolo
            rettangolo.

            [image: ]
Fig. 11
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Fig. 12
Così, se la linea ab si muove mentre a resta fisso, il movimento è rappresentato dal
            triangolo ABC. Infatti, se il movimento di b è uguale[53] al lato bc, allora la stessa cosa
            si avrà in proporzione in tutti i punti che si possono dare [di
            ab]. Per esempio, se d è il centro [di ab],
            allora de è uguale al movimento di d e il lato de è la metà
            di bc (cfr. figura 11). D’altra
            parte, se la linea retta ab si muove con lo
            stesso moto tanto in a quanto in b, il movimento è rappresentato da un doppio
            triangolo rettangolo, ossia dal rettangolo ABCD (cfr. figura 12); infatti,
            tutti i punti che si possono dare [di ab]
            si muovono con lo stesso moto. Se invece a
            e b si muovono con moto simile, ma non
            uguale, questo [movimento] può avvenire in un’infinità di modi e
            non potrebbe essere rappresentato da un’unica figura[54].

            [image: link to parallel text] 44. Dalla prima rappresentazione del movimento di
            una linea retta di cui un estremo resta fisso, consegue che la
            superficie, che è la misura del moto di una linea ed è generata
            dalla rotazione di questa, ha come linea di contorno una linea
            curva che si origina dal punto b, e una
            superficie circolare che deriva dalla linea ab (cfr. figura 13). E se prendi
            su ab un punto qualsiasi, per esempio al
            centro, e sia questo punto d, la curva
            generata dal moto di d starà alla curva
            generata da b come, nella figura[55], il lato de sta al lato bc; le linee di contorno sono, infatti, le
            misure dei movimenti dei punti. Da ciò sarà necessario che la
            misura [del rapporto] tra ogni semidiametro e la circonferenza
            resti la stessa.

            [image: ]
Fig. 13
[image: link to parallel text] 45. Inoltre, poiché la superficie è generata dal
            movimento del semidiametro attorno alla circonferenza e il
            rapporto tra ogni semidiametro e le circonferenze è lo stesso, il
            rapporto tra le superfici sarà uguale a quello tra i quadrati dei
            semidiametri. Di conseguenza, la superficie del cerchio che ha un
            semidiametro pari a 4 è quattro volte la superficie di quello che
            ha un semidiametro pari a 2. Da ciò, si avrà il rapporto delle
            superfici coniche tra di loro e con quelle di base. Infatti,
            poiché il semidiametro [della circonferenza] di base e il lato del
            triangolo che descrive la [superficie] conica si muovono intorno
            allo stesso punto fisso all’estremità di essi e sulla stessa
            circonferenza di base, il rapporto delle superfici [di base e
            conica] sarà uguale a quello delle linee dal cui movimento si
            generano quelle superfici[56]. Siano, per esempio, il semidiametro della circonferenza
            di base e il lato del triangolo che descrive la [superficie]
            conica uguali ad ab e bc[57](cfr. figura 14).

            [image: ]
Fig. 14
[image: link to parallel text] 46. Dalla seconda rappresentazione di una linea
            che si muove con lo stesso moto in tutti i punti consegue che la
            superficie originata da tale movimento è doppia rispetto a quella
            che si origina dal primo movimento. Di conseguenza, se il
            semidiametro si muove con [questo] secondo movimento sulla stessa
            circonferenza sulla quale si era mosso con il primo movimento, si
            avrà una superficie doppia della prima. Perciò, sarà necessario
            che il prodotto del semidiametro per la semicirconferenza sia
            uguale alla superficie del cerchio. Parlo tuttavia del caso in cui
            entrambi i punti estremi si muovono con lo stesso moto
            (cfr. figura 15). Infatti, se uno si muove sul lato concavo di un
            arco e l’altro sul lato convesso, la superficie non sarà il doppio
            di quella originata dal movimento della linea avente un’estremità
            fissa e l’altra in movimento sul lato concavo dell’arco, ammesso
            pure che gli archi siano uguali. Se l’arco bd è uguale all’arco ce,
            e se la linea bc si muove descrivendo la
            superficie compresa tra le rette bc e de e le curve bd e ce, ammesso pure che si muova su archi uguali,
            essa non descriverà tuttavia una superficie doppia rispetto a
            quella originata dal movimento di ab,
            uguale a bc, con a
            che resta fisso, mentre b si muove
            sull’arco uguale fino a d, perché b si muove sul lato concavo dell’arco bd, mentre c, della
            linea bc, sul lato convesso. Inoltre, la
            convessità diminuisce tanto quanto sono le porzioni FGCH e
            FIEK.
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Fig. 15
[image: link to parallel text] 47. Da ciò, ogni sapere ricava tutto ciò che
            riguarda i rapporti tra le superfici [laterali] e le superfici di
            base dei cilindri ossia delle colonne rotonde, e tra cilindri,
            curve coniche e piani circolari. Infatti, è evidente che il
            cilindro, la cui altezza è uguale al semidiametro della base, ha
            la superficie [laterale] doppia rispetto a quella di base.
            Infatti, la linea che genera la [superficie di] base si muove
            avendo un punto fisso a una estremità e descrivendo una
            circonferenza con l’altro punto; la stessa linea genera la
            superficie laterale del cilindro attraverso lo stesso movimento di
            entrambi i due punti estremi sulla stessa circonferenza di
            base[58], cosicché dall’angolo retto abc
            che ruota attorno ad a si descriveranno la
            [superficie di] base attraverso ab e una
            doppia superficie cilindrica attraverso bc,
            dato che bc, che è uguale ad ab, si muove con lo stesso moto nei punti
            estremi b e c
            (cfr. figura 16).
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Fig. 16
[image: link to parallel text] 48. La stessa cosa accade nelle coniche. Se ABC è
            il triangolo il cui angolo retto bac ruota
            attorno ad a, e se il lato bc è doppio di ab, la
            superficie [laterale] sarà uguale alla superficie [laterale] del
            cilindro di prima, e, se disegni il cerchio il cui semidiametro è
            il doppio di ab, allora la sua superficie
            sarà uguale alla superficie [laterale] del cilindro[59] e a quella del cono prese insieme (cfr. figura 17).
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Fig. 17
[image: link to parallel text] 49. È chiaro che se la linea corrispondente alla
            circonferenza di un cerchio fosse ridotta a una [linea] retta e
            fosse moltiplicata per il semidiametro, allora la superficie del
            rettangolo che ne deriverebbe sarebbe il doppio della superficie
            del cerchio avente quella circonferenza. Infatti, questo movimento
            generatore[60] sarebbe quello in cui entrambi i punti estremi si
            muovono con lo stesso moto, mentre il cerchio si origina dal
            movimento di una linea in cui un punto rimane fisso. Pertanto, da
            molti è stato detto giustamente che tale prodotto, cioè, la
            moltiplicazione del semidiametro per la linea uguale alla
            semicirconferenza, genera una superficie uguale a [quella] del
            cerchio.

            [image: link to parallel text] 50. Esiste un’altra modalità di movimento, quello
            composto, ossia di avanzamento e di arretramento[61], come quello rappresentato nella figura[62](cfr. figura 18). Infatti, come puoi notare, ab si muove con moto doppio su ac, avanzando e arretrando sempre con lo stesso
            moto. La misura dell’avanzamento sarà ac,
            quella dell’arretramento ab e quella di
            avanzamento e di arretramento prese insieme sarà bc. Infatti, il tempo di avanzamento di a verso c è lo stesso di
            quello di arretramento di b su bc fino a c, e il
            risultato è la figura ABCD. bc comprende in
            sé il doppio movimento di arretramento di ab e di avanzamento di ac perché il quadrato di bc è uguale a quello di ab più quello di ac. Da
            ciò, nota come dal movimento di una linea si originano
            contemporaneamente due triangoli e un quadrilatero.
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Fig. 18
[image: link to parallel text] 51. Se tuttavia ab avanza
            su ac e arretra con moto differente e
            questa differenza è uguale all’arco [bc],
            allora si ha la figura ABCD, e poiché l’arco bc comprende in sé un movimento di avanzamento
            che non è uguale a quello di arretramento, allora l’arco cb è maggiore della linea retta cb (cfr. figura 19).

            [image: ]
Fig. 19
Dico che il movimento di arretramento non è uguale perché dopo
            che b raggiunge la metà dell’arco, non
            scende lungo la sua metà sotto ca, come
            quando b scende lungo la metà della linea
            bc. Considera come a
            descrive l’arco ad. a si muove sul lato convesso e b su quello concavo, e quanto più concava è la
            linea cb, meno essa è convessa. Di
            conseguenza, la figura curvilinea compresa tra l’arco concavo bc e l’arco convesso uguale ad è uguale al parallelogramma ABCD[63], e così saprai come tra le linee curve più lunghe cade
            la stessa superficie di quella compresa tra linee rette più corte.
            Da ciò si possono considerare diversi altri modi di moto composto,
            su cui ora sorvolo, dal momento che chiunque potrà concepirli per
            sé.

            [image: link to parallel text] 52. Se fai attenzione a un terzo movimento che si
            verifica quando entrambe le estremità della linea si muovono, ma
            con moto differente, vedrai chiaramente che, facendo il rapporto
            dei moti, si perviene alla superficie. E, per rappresentartelo più
            facilmente, considera il doppio della linea ab, divisibile fino al punto b, che resta l’estremo indivisibile per
            entrambe le parti divise; si avrà dunque che, mentre b resta fermo, a si
            muove (cfr. figura 20). Se ora sposti il punto isolato a così che formi un angolo attorno a b, potrai conoscere il rapporto delle superfici
            facendo il rapporto tra la circonferenza, che descrive il punto
            mobile a, e la circonferenza che descrive
            b. Per esempio, sposta il punto mobile a in modo da formare un angolo tale che la
            linea ad, che va da a fino al punto della linea orizzontale, con il
            punto fisso a, sia metà di ab; quindi, la linea mobile ba descrive una superficie conica che sarà
            della metà maggiore della superficie della circonferenza di base
            che descrive ab, e così proporzionalmente
            in tutti i casi[64]. Di conseguenza è evidente che, quando il [punto] mobile
            a si sposta in modo tale che il suo
            movimento risulti il doppio del movimento di ab, vale a dire quando entrambe cadranno su
            un’unica linea, allora la linea mobile ba
            descriverà una superficie piana tripla della superficie che
            descrive ab. E questa è l’ultima e la
            massima [superficie], alla quale le intermedie si avvicinano in
            maniera proporzionale. Da ciò, sai come formare sezioni di cono
            che abbiano qualsiasi rapporto tu voglia con la base; e nello
            stesso tempo sai come ridurre le superfici dei solidi formati da
            due coni[65] aventi un’unica [superficie di] base in altre figure. E
            quel che vuoi sapere di queste cose, puoi ottenerlo facilmente
            così.
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Fig. 20
[image: link to parallel text] 53. Bisogna tuttavia fare attenzione, da quanto
            detto, a come procedere nelle coniche. Se ABC[66] è il triangolo, ab il lato che
            descrive il cono e cb il semidiametro della
            [circonferenza di] base, prolunga la linea ac e conduci da b una
            linea in modo da ottenere il triangolo uguale BDC
            (cfr. figura 21).
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Fig. 21
È evidente che, se ad resta fisso e si
            fa ruotare il triangolo ABD attorno a sé, si ottiene un
            solido[67] formato da due coni uguali. Prolunga, quindi, la linea
            ab e sia be uguale
            ad ab. È chiaro che, se si compie la
            rotazione come prima [attorno a ad], la
            linea be genera una superficie tripla
            rispetto alla superficie che genera ab, e
            ae una superficie conica quadrupla rispetto
            a quella generata da ab. Così, se sposti
            bd in modo che si trovi a metà tra bd e be, risulterà una
            superficie doppia, con bd una uguale e be una tripla, e si giungerà sempre a metà
            quando si forma un angolo retto con il semidiametro della
            [circonferenza di] base. Se invece si sposta [bd] più in là [della metà] o di qua [della
            metà], si genererà una [superficie] maggiore o minore, il che è
            noto da quanto detto in precedenza. Sai, dunque, che, quando il
            cono e il cilindro hanno la stessa base e il lato del cono è
            uguale all’altezza del cilindro, la superficie del cilindro è
            sempre doppia rispetto a quella del cono, e se è maggiore
            [dell’altezza del cilindro], [la superficie] sarà maggiore, e se è
            minore [dell’altezza del cilindro], [la superficie] sarà minore,
            in maniera proporzionale.

            [image: link to parallel text] 54. Se prendi come lato del cono la corda di un
            arco[68] e descrivi su di esso l’arco, come sul lato ab l’arco afb e su be lo stesso arco, allora la superficie che si
            genera dalla curva afb sarà un terzo della
            superficie che si genera dalla curva be.
            Così, se vuoi ottenere una superficie doppia, fa’ com’è stato
            detto per le coniche. Pertanto, se afb è un
            quadrante, è chiaro che dalla sua rotazione si origina una
            superficie semisferica e dalla curva bg una
            doppia rispetto a quella, ossia una superficie curva uguale a
            quella ‹della sfera› di cui cb è il
            semidiametro del cerchio maggiore; e dalla curva bc una superficie tripla (cfr. figura 22).
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Fig. 22
Da ciò saprai come effettuare qualsiasi moltiplicazione tu
            voglia in queste superfici curve.

            [image: link to parallel text] 55. Se trasformi un arco in una linea curva
            avente la curvatura di una qualsiasi sezione di parabola o di una
            sezione obliqua di cilindro — sezioni che non sono archi di
            circonferenza, ma curve di diversa curvatura[69] —, procedendo nello stesso modo il rapporto delle
            superfici sarà uguale.

            [image: link to parallel text] 56. Tenendo fisso a,
            descrivi una superficie circolare piana facendo ruotare ab, e fai ruotare su ac
            il quadrante del cerchio che si ottiene unendo un punto estremo
            b a un altro c,
            fisso come a, allora la superficie
            risultante dal quadrante sarà doppia rispetto a quella generata
            dalla linea ab (cfr. figura 23).

            [image: ]
Fig. 23
È evidente, infatti, che da bc si genera
            una superficie semisferica e da ab il
            cerchio massimo la cui superficie, moltiplicata per quattro, è
            uguale alla superficie della sfera, come dimostra Archimede[70].

            [image: link to parallel text] 57. Se vorrai descrivere una superficie
            cilindrica, una sferica e una conica e infinite sezioni coniche
            della stessa superficie, procederai così (cfr. figura 24):
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Fig. 24
sia ab il semidiametro di un cerchio a
            cui unisci bc, uguale ad ab, in modo che si formi un angolo retto;
            traccia da a una linea parallela a bc di lunghezza indefinita e sia essa ad; traccia da b verso
            ad una linea doppia rispetto ad ab e sia essa db. Poi
            traccia la linea da d a c. Dico che tutte le linee che si possono
            condurre da b verso cd descrivono, attraverso la rotazione, sezioni
            coniche uguali o alla piramide[71] bc o alla conica bd, poiché da bc e bd si originano superfici uguali che sono il
            doppio della superficie piana del cerchio di cui ab è il semidiametro. Precedentemente è stato
            mostrato che le intermedie si rapportano allo stesso modo, per
            esempio, bi e bg o
            altre del genere. È evidente, infatti, che le superfici non
            possono essere maggiori di quella che risulta da bc, né minori di quella che risulta da bd. Poiché queste sono uguali, così lo saranno
            tutte le intermedie. Descrivi il quadrante di un cerchio, di cui
            ab è il semidiametro, e sia esso be. È chiaro, da quanto detto, che la
            superficie che si origina dalla curva be è
            uguale a quelle suddette[72].

            [image: link to parallel text] 58. Considera linee curve, ma non circolari,
            generate da una linea che si muove sui suoi due punti estremi con
            moto non uguale, come se la retta ab si
            muovesse su b più [velocemente] di come si
            muove su a; poni che a si muove sulla linea ac e b sulla curva bd: se ciò avviene regolarmente, allora quando
            a sarà giunta al centro di ac, anche b giungerà al
            centro di bd (cfr. figura 25). Può anche
            essere che un punto si muova regolarmente con un moto continuo
            uguale, e un altro con un moto non uguale: per esempio, [un punto
            può muoversi] all’inizio più velocemente, poi in modo più lento e
            continuo, con una irregolarità per cosi dire regolare[73]. Da questi diversi movimenti si generano diverse
            curvature: alcune saranno uguali a sezioni coniche, altre a
            sezioni trasversali cilindriche o a sezioni oblique sferiche[74].
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Fig. 25
[image: link to parallel text] 59. Da ciò si ha che le superfici curve delle
            sezioni che si definiscono parabole e quelle delle trasversali
            cilindriche non derivano direttamente dal movimento di una linea.
            Se vuoi cercare i rapporti di queste sezioni, procedi in questo
            modo: considera l’eccesso della corda sulla freccia; questo
            eccesso sarà pari al movimento della linea uguale alla freccia su
            uno dei suoi punti[75], mentre il movimento dell’altro punto sarà pari alla
            curva. Perciò, la superficie sarà la metà di quella prodotta dalla
            freccia sulla curva se la linea non fosse mossa su una delle sue
            estremità, e sarà maggiore della metà a seconda del rapporto tra
            il quadrato dell’eccesso[76] del suo arco sulla freccia e il quadrato della
            curva[77].

            [image: link to parallel text] 60. Prendi, per esempio, la porzione di cerchio
            compresa tra [un arco pari a] un sesto della circonferenza, la
            semicorda e la freccia, e sia essa segnata con ABC; sia ab la semicorda
            del doppio dell’arco, ac la freccia, d il centro del cerchio. Traccia db, dc e la linea bc (cfr. figura 26). È chiaro che
            ac e ad sono uguali
            così come i triangoli DBA e BAC. La porzione [di superficie
            curvilinea] al di sopra della linea bc, di
            cui la porzione di cerchio [ABC] eccede il
            triangolo, deriva quindi dal movimento della freccia ac su entrambe le sue estremità. Se le due
            estremità si muovessero con lo stesso moto, la porzione al di
            sopra della linea bc sarebbe uguale alla
            porzione BAC; ma, poiché le estremità non si muovono con lo stesso
            moto, allora essa è minore. E, affinché tu veda come esse non si
            muovono con lo stesso moto, traccia da b
            verso a la linea uguale ad ac e sia be uguale ad
            ac. Si muova dunque b sull’arco bc e, mentre
            b si muove sull’arco bc, sarà necessario che e si muova verso a.
            Dunque, nello stesso tempo in cui e si
            muove sulla linea ea, b si muove sull’arco bc.
            Dunque, la superficie della porzione [di cerchio ABC] supera la
            metà della porzione di cerchio DBC di una quantità pari al
            rapporto del quadrato della linea ea e il
            quadrato della linea uguale alla curva bc.
            Infatti, il prodotto di ac per l’arco bc dovrebbe essere metà di quello di db per lo stesso arco, essendo ac la metà di db. Ma,
            poiché l’estremità che resta fissa in d si
            muove su ac, allora supera la metà. La
            curva bc è quindi il triplo di ea, e così [la porzione di cerchio ABC] supera
            di un nono la metà [della porzione di cerchio DBC], e la porzione
            sopra la linea bc sarà due noni della metà
            [della porzione di cerchio DBC]. Così si opera nelle sezioni
            delimitate da linee curve.
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Fig. 26
[image: link to parallel text] 61. Ora, vorrei parlare di come trasformare una
            linea curva in una [linea] retta, ma non come ho fatto nel primo
            libro, cioè trasformando la retta in curva, ma immediatamente,
            ossia mediante una sottile coincidenza, di cui questa è la
            proposizione[78].

            [image: link to parallel text] 62. Descrivi un quarto di cerchio[79], traccia la prima linea dal centro verso il punto
            d’inizio dell’arco, una seconda linea, della stessa lunghezza
            della prima, perpendicolare al punto di tangenza della prima con
            l’arco, una terza, dal centro all’estremità, uguale al lato del
            triangolo inscritto al cerchio, una quarta dall’estremità della
            seconda all’estremità della terza. Se ora porti una quinta linea
            dall’inizio del quadrante alla quarta in modo che la corda che va
            dal punto di tangenza di questa quinta linea e la curva
            all’estremità di tutto il quadrante, ossia la sesta linea, sia
            uguale alla quinta linea, la quinta sarà minore del quadrante e
            precisamente della metà della parte della linea compresa tra la
            curva e la quarta (cfr. figura 27).

            [image: ]
Fig. 27
Sia be il quadrante descritto intorno al
            centro a, ab la
            prima linea, bc la seconda uguale e
            perpendicolare ad ab, abc l’angolo retto, aed
            la terza linea uguale al lato del triangolo inscritto, e cd la quarta linea. Traccia poi da b una linea verso cd, e
            sia questa bg; nel punto in cui essa taglia
            il quadrante be, poni f, e sia questa la quinta linea. Da f traccia la sesta che è la corda fe. Dico che se fe è
            uguale a bg, allora bg è minore del quadrante be della metà di fg.
            Aggiungi, quindi, la metà di fg ad bg e sia gh la metà di
            fg. Dico che bh è
            uguale alla curva be[80].

            [image: link to parallel text] 63. Dimostrazione. Per prima cosa suppongo che la
            differenza tra la somma tra la quinta e la sesta e la parte
            compresa tra la curva e la quarta linea, che chiamo sempre parte,
            è uguale a quella che c’è tra la parte della quinta linea che è la
            corda, e la sesta linea, che è la corda della parte residua
            dell’arco del quadrante; e che questa differenza tra la quinta
            linea, che è la minore del quadrante, e la sesta che, sommata alla
            parte, è maggiore, è il doppio della differenza tra la quinta
            linea, che è minore della curva del quadrante, e la sesta linea
            che, sommata alla parte, è maggiore del quadrante; e che dunque,
            quanto maggiore è la loro differenza, tanto più lunga è la linea
            che si trova al centro tra la quinta e la sesta sommata alla
            parte, linea che chiamo linea di mezzo; e che quanto meno esse
            differiscono, tanto minore è la linea di mezzo[81]. Suppongo, in secondo luogo, che la sesta, sommata alla
            parte, possa superare il quadrante della metà della parte.
            Infatti, essa può superarli di una parte minore e di una maggiore,
            e così, anche di una parte che non è né maggiore, né minore della
            metà.

            [image: link to parallel text] 64. Da ciò inferisco che questa sesta [linea],
            sommata alla parte, eccede il quadrante, così come il quadrante
            eccede la quinta [linea]; che la parte è uguale alla differenza
            delle corde e la sesta è uguale alla quinta. Le altre, infatti, si
            rapportano tra di loro di conseguenza. Se lo neghi, perché dici
            che la differenza delle corde è minore della parte, allora la
            linea di mezzo anche è minore; e [se lo neghi], perché il minore è
            sottratto alla sesta [linea] sommata alla parte come prima, dato
            che la parte è per sé maggiore e la metà della parte è maggiore
            della metà della differenza delle corde, questo è impossibile: è
            impossibile, cioè, che la linea, da cui si sottrae di meno, sia
            minore di quanto sarebbe se si sottraesse di più. Allo stesso
            modo, se dici che la differenza delle corde è maggiore della
            parte, allora la linea di mezzo sarà maggiore e tuttavia si
            sottrarrà più di prima, quando era sottratta la metà della parte,
            che dici minore, il che è di nuovo impossibile. Di conseguenza, è
            evidente che, se la sesta [linea], sommata alla parte, eccede
            [l’arco de] il quadrante della metà della parte, sarà necessario
            che la parte sia uguale alla differenza delle corde e, di
            conseguenza, che la sesta [linea] sia uguale alla quinta, che è
            quanto si voleva trovare.

            [image: link to parallel text] 65. Da quanto detto segue facilmente la
            quadratura del cerchio. Infatti, il medio proporzionale tra bh e il diametro del cerchio è il lato del
            quadrato che quadra il cerchio (cfr. figura 28).

            [image: ]
Fig. 28
Infatti, segue che se bx è uguale a bh, allora nella rotazione descrive una sezione
            conica la cui superficie è uguale alla metà di quella della sfera
            e il cui bordo ha una lunghezza uguale a un quarto della
            circonferenza del cerchio maggiore di questa sfera, che è ciò che
            si cercava in particolare.

            [image: link to parallel text] 66. Ora, diversamente si trova una linea retta
            uguale al[l’arco di un] quadrante, e cioè in questo modo. Se la
            sesta linea, sommata a una parte della quinta linea, è uguale
            al[l’arco di un] quadrante, è necessario che siano uguali tra di
            loro. Si utilizzi la figura precedente e sia bpq la quinta [linea] e ep la sesta (cfr. figura 29).

            [image: ]
Fig. 29
Dico che, se ep e pq sono uguali al[l’arco del] quadrante be, allora ep sarà
            uguale a eq. Per dimostrarlo, suppongo, in
            primo luogo, che, se porti la quinta [linea] da b al centro della quarta [linea] cd, che è v, la parte
            tv sarà la più corta tra tutte le altre e
            aumenterà di continuo al di sopra e al di sotto. In secondo luogo,
            suppongo che la sesta [linea], sommata a questa parte minima, sia
            maggiore del[l’arco del] quadrante, e così occorre che la sesta
            [linea], sommata alla parte che deve essere uguale al[l’arco del]
            quadrante, sia minore. In terzo luogo, suppongo che si possa dare
            una sesta [linea] che, sommata alla parte, sia uguale al[l’arco
            del] quadrante. In quarto luogo, suppongo che la somma delle seste
            [linee] e delle parti aumenti contemporaneamente e di continuo da
            e verso b, mentre le
            parti diminuiscono[82]. Da queste supposizioni, che sono evidenti e facili a
            chiunque, si dimostra la proposizione.

            [image: link to parallel text] 67. Infatti, se dirai che la sesta [linea] ep è maggiore della parte pq, allora essa sarà maggiore della metà
            del[l’arco del] quadrante. E dunque si avrà che la sesta [linea]
            er è uguale alla metà del quadrante e la
            parte rs sarà maggiore di pq, per la prima ipotesi. La somma di er e rs sarà maggiore
            del[l’arco del] quadrante e contemporaneamente minore della somma
            di ep e pq, che, per
            la quarta ipotesi, è uguale al[l’arco del] quadrante. E così, la
            minore sarà maggiore della maggiore, il che è impossibile. E se
            dirai che ep è minore di pq, segue la stessa cosa; infatti, sarà minore
            della metà del[l’arco del] quadrante. Si avrà che et è uguale alla metà del[l’arco del]
            quadrante, la cui parte tv sarà minore
            della parte pq, e di conseguenza la somma
            di et e tv sarà
            minore della somma di ep e pq. Così, la maggiore sarà minore della minore,
            il che è, come nel primo caso, impossibile. Il motivo per cui la
            somma della sesta [linea] e della parte può essere uguale
            al[l’arco del] quadrante è chiaro: è evidente che ciò accade
            quando la sesta è uguale alla parte della quinta, il che è ciò che
            si cercava.

            [image: link to parallel text] 68. Dalla suddetta scoperta, se vuoi, [potrai]
            ricavare come ridurre ogni porzione di superficie sferica in una
            superficie conica o in una cilindrica, anche se non conosci il
            rapporto tra una porzione di superficie sferica e la superficie di
            tutta la sfera, e ciò nel modo seguente: sia, per esempio, il
            quadrante ABC come quello di prima; traccia il suo arco hc che conosci e che è pari a due terzi del
            quadrante (cfr. figura 30).
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Fig. 30
Traccia la perpendicolare da h ad ac, e sia questa ho. ho sarà, dunque, la semicorda del doppio
            arco[83]. Prendi una linea retta uguale alla curva hc, e sia questa tv, la
            cui metà è la corda ck. Da h traccia una linea retta passante per k che sia uguale a tv e
            sia essa hkr. Quindi, fa’ passare da un
            punto qualsiasi della linea hp, per esempio
            s, una linea da r
            verso aq, e sia essa sq, in modo che la linea condotta da h al punto dove aq
            taglia la linea, vale a dire q, sia il
            doppio di hs. La superficie cilindrica
            generata da hs sarà uguale alla superficie
            sferica generata dall’arco hc, alla
            superficie conica generata da hq e alle
            intermedie che sono tracciate da h verso
            sq, come quanto fatto in precedenza, il che
            è assolutamente evidente dalle premesse. E così, se sai che una
            superficie cilindrica è uguale a [quella della] sfera, sarai
            capace di trovare grazie a ciò una [superficie] conica uguale, il
            cui bordo ha una lunghezza pari a [quella della] linea curva del
            cerchio maggiore.

            [image: link to parallel text] 69. E poiché, grazie ad Archimede[84], sai come ridurre ogni porzione di superficie sferica in
            una superficie circolare piana, e da quanto detto è evidente come
            questa si riduce in una cilindrica e di conseguenza in una conica,
            da ciò e da quanto appena premesso è chiaro come potrai ridurre
            ogni curva in linea retta, anche se non conosci il rapporto di
            questa con l’intero cerchio maggiore; e quest’arte sottile è
            superiore alla quadratura del cerchio. Al contrario, se hai una
            linea retta uguale a una curva, allora potrai trovare la
            superficie cilindrica e di conseguenza le altre [superfici]
            coniche che sono uguali a quella sferica.

            [image: link to parallel text] 70. A proposito di questo, già Archimede[85] aveva scoperto, nella quadratura della parabola, come
            questa superficie potesse essere ridotta a [quella del] quadrato,
            dimostrando che la superficie compresa tra una linea retta e la
            sezione di un cono retto è quattro terzi [della superficie] del
            triangolo che ha come base la stessa linea retta della parabola e
            come altezza l’altezza della parabola. È ora evidente come si può
            trasformare una [superficie] quadrata in una superficie circolare
            e che con essa si possono trovare una [superficie] cilindrica e
            una [superficie] conica uguali. Da quanto detto, hai il mezzo per
            ridurre la linea curva di una sezione di questa parabola in una
            retta, e, se ti applicherai, potrai così rettificare ogni
            curvatura regolare, anche della sezione obliqua del cilindro[86].

            [image: link to parallel text] 71. Adesso voglio capire come si giunge alla
            quadratura del cerchio attraverso le lunule, strada che gli
            antichi hanno percorso invano[87]. L’obiettivo è trovare, tra il lato del poligono
            circoscritto al cerchio e il lato del poligono inscritto, una
            linea che tagli la lunula in modo che il triangolo[88] sia uguale alla porzione del cerchio di cui quello sarà
            stato l’arco (cfr. figura 31). Per esempio, sia bc
            l’arco del cerchio di centro a, e sia bc uguale a un terzo della circonferenza, alla
            quale è circoscritto il triangolo di lato ef; una volta tracciate le linee af e ae, sia la linea
            cb la corda o il lato del triangolo
            inscritto. Voglio determinare una linea ik,
            compresa tra ef e bc, che tagli la lunula LMN, in modo che essa
            sia uguale alle porzioni BIL e CKN e il triangolo AIK sia uguale
            alla porzione di cerchio ABMC[89].

            [image: ]
Fig. 31
[image: link to parallel text] 72. Per questa ricerca, suppongo che il lato [del
            poligono] inscritto sia minore dell’arco e che quello [del
            poligono] circoscritto sia maggiore [dell’arco], e che sia tanto
            maggiore quanto minore è il lato [del poligono] inscritto. In
            secondo luogo, suppongo che possano cadere due linee tra il lato
            [del poligono] inscritto e il lato [del poligono] circoscritto, di
            cui una è uguale all’arco e l’altra è posta in modo tale che il
            triangolo rettangolo risulti uguale alla porzione di cerchio. Si
            indichi come prima [linea] quella che coincide con il lato [del
            poligono] inscritto, come seconda quella uguale all’arco, come
            terza quella che è posta in modo tale che il triangolo rettangolo
            risulti uguale alla porzione di cerchio, come quarta quella che
            coincide con il lato del poligono circoscritto. In terzo luogo,
            suppongo che queste quattro linee si rapportino tra di loro in
            modo tale che, quando cresce una, crescono tutte e, quando
            diminuisce una, diminuiscono tutte; perciò, all’aumentare una,
            segue che aumenta anche l’altra. In quarto luogo, suppongo che
            quanto più aumentano, tanto più differiscono, e quanto più
            diminuiscono, tanto meno differiscono. In quinto luogo, quanto più
            le linee differiscono, tanto più differiscono i loro quadrati.

            [image: link to parallel text] 73. Da ciò affermo che: quanto maggiore è la
            quarta linea, tanto maggiori sono la terza, la differenza delle
            linee e [quella] dei loro quadrati. Allo stesso modo, quanto
            maggiore è la seconda linea, tanto maggiori sono la prima, la
            differenza delle linee e [quella] dei loro quadrati. Similmente,
            quanto maggiore è la differenza tra il quadrato della quarta linea
            e il quadrato della terza, tanto maggiore è la differenza tra il
            quadrato della seconda e il quadrato della prima, e così anche la
            differenza delle differenze. Di conseguenza, tanto maggiore è la
            quarta linea, tanto maggiori sono la prima, le differenze dei loro
            quadrati, e la differenza delle differenze tra la quarta e la
            terza, da un lato, e tra la seconda e la prima, dall’altro. A
            seconda di come si rapportano il quadrato della quarta linea e il
            quadrato della prima, si rapporteranno le differenze tra la quarta
            linea e la terza, da un lato, e tra la seconda linea e la prima,
            dall’altro. Questo significa che, se il quadrato della seconda
            linea è maggiore del quadrato della prima di una certa quantità, e
            se il quadrato della quarta linea è il doppio del quadrato della
            prima, allora il quadrato della quarta linea sarà maggiore del
            quadrato della terza [e precisamente][90] del doppio; e se il rapporto tra il quadrato della
            quarta e il quadrato della prima è diverso, anche il rapporto tra
            le quantità di tali differenze è diverso.

            [image: link to parallel text] 74. Se lo negassi, e dicessi che il rapporto tra
            il quadrato della quarta linea e il quadrato della prima è di tre
            a uno, ma che il rapporto tra l’eccesso del quadrato della quarta
            sulla terza e l’eccesso del quadrato della seconda sulla prima non
            è lo stesso, e che anzi l’eccesso del quadrato della quarta sul
            quadrato della terza è pari a tre e l’eccesso del quadrato della
            seconda sul quadrato della prima è pari a uno, dico che ciò
            implicherebbe una contraddizione. [In questo caso], infatti,
            risulta che la prima e la seconda linea sono minori e più simili
            alla prima e alla seconda [del caso precedente], le quali si
            rapportano in modo tale che la differenza sia la metà [della
            differenza tra la terza e la quarta]. Infatti, quanto minore è la
            differenza degli eccessi, tanto più simili e minori sono le linee,
            e da ciò segue che la prima e la seconda sono maggiori della prima
            e della seconda, che differiscono della metà dalla differenza tra
            la quarta e la terza. Infatti, quanto più la differenza tra la
            quarta e la terza linea supera la differenza tra la seconda e la
            prima, tanto maggiori e differenti risultano la seconda e la
            prima. Saranno, quindi, maggiori della prima e della seconda dove
            la differenza è la metà, allorché si pone la differenza uguale a
            un terzo della differenza della quarta e della terza. Esse saranno
            così maggiori e minori, più simili e più dissimili, e ciò è
            contraddittorio. La stessa contraddizione seguirebbe se si ponesse
            che la differenza tra la seconda e la prima linea è maggiore della
            metà della differenza tra la quarta e la terza. E questa
            contraddizione si verificherebbe in tutti i casi in cui il
            rapporto tra l’eccesso del quadrato della quarta sulla terza e
            l’eccesso del quadrato della seconda sulla prima fosse diverso da
            quello tra il quadrato della quarta e il quadrato della prima.

            [image: link to parallel text] 75. Se dunque, con questo sussidio, volessi
            tagliare una lunula, o quadrare un cerchio, fa’ in questo modo,
            per esempio in un quadrato (cfr. figura 32).
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Fig. 32
Sia dunque bc il quadrante descritto
            intorno al centro a. Traccia da a verso b e c [due] linee di lunghezza indefinita, e
            traccia la corda bc. Il lato [del quadrato]
            circoscritto eof che tange l’arco in o; traccia il semidiametro ao, poi segna la seconda linea gh uguale all’arco e laddove essa taglia ao si ponga i. Poi, si
            tracci la terza linea kl , e dove essa
            taglia ao, si ponga m. Se, quindi, la terza, cioè, kl, è tale che il suo quadrato è minore del
            quadrato di ef del doppio della differenza
            tra il quadrato di bc e il quadrato di gh, e se risulta che il prodotto di ao per ih è uguale al
            prodotto di am per ml, allora otterrai quel che cercavi.
            Altrimenti, apporta le opportune modifiche finché risulti ciò.

            [image: link to parallel text] 76. Un esempio numerico. Si ponga il semidiametro
            ao uguale a 7, il cui quadrato è 49; bc sarà la radice di 98 ed ef la radice di 196. Si ponga gh uguale a 11, il suo quadrato sarà 121 da cui
            sottrai 98: resta 23. Da 196 sottrai il suo doppio, cioè, 46:
            resta 150. Se il prodotto di 7 per 5 più la metà [di uno] fosse
            eguale al prodotto della metà della radice di 150 per se stesso,
            cioè ad am per ml,
            che è lo stesso, dato che am è uguale a ml, allora otterresti quello che cercavi, e il
            doppio di ml sarebbe il lato del quadrato
            uguale al cerchio e un quarto della circonferenza sarebbe 11. Ma,
            se fai bene i calcoli, troverai che supera di poco 11[91].

            [image: link to parallel text] 77. A livello pratico è piuttosto difficile
            trovare le linee intermedie, la seconda e la terza. Per
            risparmiarti la fatica, fa’ così (cfr. figura 33): traccia una
            linea ac pari a 7, come il semidiametro, la
            cui metà è b; traccia le perpendicolari cd e be; sia dc uguale a ac e eb uguale ad ab e
            traccia la linea aed. Segna su cd il semidiametro e sia cf uguale al semidiametro; segna la metà della
            corda del quadrante, ossia bc nella figura
            precedente, su be, e sia bg uguale alla metà della corda dell’arco del
            quadrante. Traccia la linea fg e, poiché
            cd è il quadrato la cui radice è cf, e bg la radice di
            be, allora cerca, tra be e cd, i quadrati
            delle metà delle linee intermedie, cioè, della seconda e della
            terza. Per esempio, sia ik il quadrato
            della metà della seconda linea, e dove essa taglia fg poni l. Vedi di
            quanto ik supera be
            e fa’ che cd superi del doppio la terza mn in modo che be superi
            mn di una quantità doppia di quella di cui
            ik supera be;
            laddove mn taglia fg
            poni o. Se, dunque, dal prodotto di mo per se stesso si avrà lo stesso risultato
            del prodotto del semidiametro per li,
            otterrai ciò che cercavi, e, raddoppiando mo, si avrà il lato del quadrato del cerchio;
            altrimenti, apporta le opportune modifiche finché risulti così.
            Come hai operato nel quadrante, così potrai procedere, in maniera
            proporzionale, negli altri archi di cui ci siamo occupati in
            precedenza, [potrai] tagliare le lunule e rettificare il
            cerchio[92].
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Fig. 33
[image: link to parallel text] 78. Adesso, tuttavia, voglio trattare brevemente
            anche di altri modi possibili per risolvere immediatamente il
            cerchio in qualsiasi poligono tu voglia, senza necessariamente
            risolvere prima la circonferenza del cerchio in una linea retta.
            Lascio questo compito come esercizio a coloro che hanno più tempo
            libero di me.

            [image: link to parallel text] 79. Se descrivi i lati dei quadrati circoscritti
            e inscritti al quadrante di un cerchio e se tracci una linea dal
            centro del cerchio fino al punto in cui il lato del circoscritto
            tocca la circonferenza, un’altra dal centro all’estremità del lato
            fino a chiudere il triangolo, e poi una linea dal centro al lato
            del circoscritto, [passando] per un punto qualsiasi dell’arco, in
            modo tale che un’altra linea parallela ai lati dei poligoni vada
            da un lato all’altro del triangolo [passando] per lo stesso punto
            dell’arco, allora questa linea sarà uguale alla [somma delle due]
            porzioni che la linea tracciata dal centro e passante per lo
            stesso punto dei lati dei suddetti poligoni ritaglierà tra la
            stessa linea e l’altra, che è il lato del triangolo, condotta fino
            al punto di tangenza: questa linea parallela sarà la metà del lato
            del poligono corrispondente all’arco uguale al cerchio.

            [image: link to parallel text] 80. Sia descritto un cerchio attorno al centro
            a. Voglio trovare un quadrato uguale ad
            esso (cfr. figura 34).

            Segno il quadrante, che indico con bc, e
            traccio i lati del quadrato: sia de il lato
            del quadrato circoscritto, che tocca il cerchio nel punto f; traccio af, ad e bc
            come lato del quadrato inscritto. Dove bc
            taglia af, pongo k.
            Traccio, quindi, da a verso df una linea che passi per un qualsiasi punto
            dell’arco bf, e sia g il punto di tangenza di questa linea con
            l’arco. Dove essa taglia il lato bk, si
            ponga l, e dove taglia il lato df, si ponga m.
            [Passando] per g, tiro la linea parallela a
            df, da af ad ad, e sia essa hgi. Dico
            che se hi è uguale [alla somma di] lk e mf, hi è la metà del lato del quadrato uguale al
            cerchio.

            [image: ]
Fig. 34
[image: link to parallel text] 81. Per comprendere ciò, bisogna in primo luogo
            considerare quanto segue: descrivi un cerchio attorno al centro
            a, traccia nel punto f la tangente ad esso di lunghezza indefinita e
            la linea af; poi tira da a alla tangente la linea ac che taglia il cerchio nel punto g e traccia dal punto o
            della linea af una linea all’infinito
            [passante] per g e parallela alla tangente.
            Su questa linea, attraverso un’altra linea da a alla tangente, si ricaverà un’equatrice[93], e traccia hrd in modo che or sia l’equatrice. La chiamo così perché pone
            sotto alla lunula OGF, che essa ricava dall’area del cerchio, la
            lunula HRG avente la stessa grandezza, chiudendo così il triangolo
            rettangolo ARO in modo tale che risulti uguale alla porzione di
            cerchio AHF (cfr. figura 35).

            [image: ]
Fig. 35

            [image: link to parallel text] 82. In secondo luogo, osservando la figura con la
            tangente e la linea su cui è ricavata l’equatrice, bisogna
            considerare che da qualsiasi punto del cerchio si può tracciare
            una corda in modo che una sua parte tra af
            e ac, aggiunta a cf,
            sia uguale alla suddetta equatrice. Sia h
            il punto sul cerchio e ik la parte [di
            corda] tra ac e af
            (cfr. figura 36).
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Fig. 36
[image: link to parallel text] 83. In terzo luogo, utilizzando la figura
            precedente con la tangente e la linea su cui è ricavata
            l’equatrice, bisogna considerare che, se si prende un’altra linea
            su ac, per esempio al, e questa viene ruotata dal lato destro
            tenendo fisso a, allora arriva a un certo
            punto del cerchio dal quale, se si traccia una corda parallela
            alla tangente fino alla linea af, la parte
            tra ac e af aggiunta
            a cf sarà uguale all’equatrice, tagliata da
            al (cfr. figura 37). Sia h quel punto sul cerchio, hk la semicorda, ik la
            parte e or la parte dell’equatrice. Non può
            esserci un altro punto diverso da h in cui
            si verifica quanto detto; infatti, al di qua di h le parti superano l’equatrice, al di là di
            h l’equatrice supera le parti. Ciò è vero
            se hf è un semiquadrante, altrimenti sposta
            il punto g finché risulti ciò.

            [image: ]
Fig. 37
[image: link to parallel text] 84. Dunque, nel caso in cui si verifichi
            l’uguaglianza, dico che le parti sono uguali alla vera equatrice e
            che questa è or. Se lo negassi e dicessi
            che le parti sono minori della vera equatrice, cioè di or, allora, se le parti dovessero essere
            uguali, la linea da a, che le dovrebbe
            tagliare, cadrebbe necessariamente tra c e
            d, e così anche l’arco gf sarebbe minore di quanto dovrebbe essere e
            la lunula GOF sarebbe minore di HRG. Ma, poiché dici che or è minore dell’equatrice, allora questa cade
            al di sopra di or verso la tangente e or al di sotto di essa, verso hk; di conseguenza, or
            taglia un arco maggiore rispetto all’equatrice, la lunula GOF sarà
            maggiore di HRG e quindi [l’arco] sarà contemporaneamente maggiore
            e minore. Quindi, se dicessi che le porzioni sono maggiori e or maggiore dell’equatrice, seguirebbe la
            stessa contraddizione. La proposizione è dunque evidente.

            [image: link to parallel text] 85. Ora, per ultimo, illustrerò come trovare
            nello stesso tempo tutti i lati che vuoi dei poligoni uguali al
            cerchio. Questa è la proposizione: siano dati il semidiametro del
            cerchio, i semilati dei poligoni circoscritti e le linee inscritte
            di complemento[94]. Se si conduce una linea dal centro al lato del
            [poligono] circoscritto, essa taglia una parte più piccola sulla
            linea di complemento del poligono inscritto e una parte maggiore
            sul semilato del poligono circoscritto che, sommate, sono uguali
            al semilato del poligono uguale al cerchio: allora, se altre linee
            fossero tracciate attraverso le parti di tali linee in modo che
            dette parti si rapportino alle precedenti parti dei semilati come
            i semilati di un poligono presi insieme si rapportano ai semilati
            dell’altro, esse taglierebbero in modo simile le parti, la minore
            dalla linea inscritta di complemento e la maggiore dal semilato
            del poligono circoscritto, le quali sono uguali al semilato del
            poligono uguale al cerchio (cfr. figura 38).

            [image: ]
Fig. 38
[image: link to parallel text] 86. Sia descritto un cerchio di centro a, il cui semidiametro sia ab; siano tracciati il semilato del triangolo
            circoscritto bc, la linea di complemento
            de, il semilato del quadrato circoscritto
            bf e la linea di complemento gh. Allo stesso modo, se vorrai, potrai
            tracciare i semilati dei vari poligoni. Traccia ora una linea da
            a a bc e, dove
            taglia de, poni i,
            e, dove taglia bc, poni k. Traccia, poi, un’altra linea da a a bc e, dove taglia
            gh, poni l e, dove
            taglia bc, poni m.
            Dico che se la parte più piccola di gh, che
            è gl, aggiunta alla più grande di bf, che è fm, è uguale
            al semilato del quadrato uguale al cerchio, allora, se la parte
            più piccola di de, che è di, si rapporta a gl
            come bc più de si
            rapporta a bf più gh
            e allo stesso modo ck[95] si rapporta a fm, allora di più ck sarà il
            semilato del quadrato uguale al cerchio, e, viceversa, il semilato
            del quadrato uguale al cerchio si rapporterà al semilato del
            triangolo uguale al cerchio come le parti suddette [si rapportano
            tra di loro]. Come hai proceduto in questi poligoni, procedi in
            tutti gli altri[96].

            [image: link to parallel text] 87. Da ciò segue questa proposizione. Infatti,
            dal diverso numero di lati dei diversi poligoni uguali a uno
            stesso cerchio, segue un diverso numero dei lati di poligoni
            circoscritti e delle linee di complemento dei [poligoni]
            inscritti. Di conseguenza, i lati, presi insieme, si rapportano
            nello stesso modo in cui si rapportano i lati presi singolarmente.
            Da ciò, affinché il rapporto dei lati sia lo stesso, anche il
            rapporto tra le parti che si formano [sui lati] dal centro
            attraverso le linee per costruire il semilato del poligono uguale
            al cerchio deve essere lo stesso.

            [image: link to parallel text] 88. Non c’è alcun dubbio tuttavia che si possa
            dividere la linea tracciata dal centro sui semilati in parti che
            siano uguali alle linee cercate. Ma potrebbe essere difficile
            [sapere] come si possano trovare linee di complemento che, sommate
            ai semilati del poligono circoscritto, danno i lati di poligoni
            della stessa superficie. Per esempio, se si somma de a bc, si ha il lato
            del triangolo, e così, se si somma gh a bf si ottiene il lato del quadrato uguale. Ma
            il rapporto dei lati si conosce facilmente da quanto detto sopra.
            Si ponga invece la linea di complemento nel triangolo uguale al
            semilato del poligono inscritto, per esempio de, e si dispongano le altre linee di
            complemento allo stesso modo. Si definiscono «complementi» perché,
            sommati ai semilati dei poligoni circoscritti, danno i semilati
            dei poligoni della stessa area.

            [image: link to parallel text] 89. Ci potrebbe essere anche un dubbio che le
            parti abbiano davvero il rapporto che devono avere. In tal caso
            potrai procedere così. Traccia ab di una
            certa lunghezza e, allo stesso modo, una linea da a [che passi] per f e
            una linea no, uguale a bc più de; dividi
            quest’ultima in due parti che stanno tra di loro come gh e bf, e siano esse
            op e pn. Riportale
            parallelamente a bc tra le suddette linee
            che partono da a [e passano] per b e per f. La linea
            tracciata da a attraverso gh taglia una parte di op, che si rapporta alla parte tagliata da gh come si rapportano i lati tra loro. Sia,
            dunque, oq la parte sulla linea op, che si rapporta a gl
            come deve essere. Se, dunque, di è uguale a
            op, allora hai quella parte. Fa’ lo stesso
            con l’altra parte della linea no, che è rs, e sia rs uguale a
            pn. Riportala, come hai fatto prima con
            l’altra parte, tra le linee che partono da a [e passano] per b e
            per f, e se la parte tagliata dalla linea
            aq su rs, ossia st, sarà uguale a ck,
            avrai ciò che cercavi. Altrimenti, apporta le opportune modifiche
            finché otterrai questo risultato. Questo è un procedimento
            universale, valido in tutti i poligoni.

            [image: link to parallel text] 90. Da ciò capisci che possiedi un’arte che ti
            consente di ridurre in una superficie rettilinea qualsiasi
            porzione di cerchio ricavabile attraverso i raggi[97] dal centro, anche se [la porzione] non ha alcuna
            proporzionalità[98] con l’intero [cerchio], e di trasformare, grazie
            all’equatrice, qualsiasi arco di circonferenza in una linea retta,
            anche se l’arco non ha alcuna proporzionalità con l’intera
            circonferenza, secondo quanto abbiamo detto in precedenza.

            [image: link to parallel text] 91. [E’ ora chiaro che la quadratura del cerchio
            finora sempre cercata, e, come si sa, non ancora trovata, è stata
            sufficientemente spiegata. Infatti, essa può essere conosciuta o
            attraverso la riduzione di una linea retta in una curva di
            circonferenza[99] — e così è trattata nel primo libro — o, al contrario,
            attraverso la riduzione di una curva di circonferenza in una linea
            retta — e così la trovi esposta in due modi in questo secondo
            libro —, oppure insieme, nel caso in cui, con la riduzione della
            curva in retta, si trova il lato del quadrato uguale al cerchio, o
            ancora senza alcuna riduzione della retta in curva e viceversa, ma
            trovando semplicemente il lato del quadrato. Anche questi
            procedimenti li puoi trovare descritti nelle pagine precedenti. È
            dunque chiaro che questa parte finora sconosciuta è stata
            abbondantemente e dettagliatamente spiegata, e da questa ne
            seguono altre che, senza di essa, non potevano essere conosciute,
            ossia i complementi matematici. Così sia][100].

            
              FACILISSIMA RETTIFICAZIONE DI UN CERCHIO

              [image: link to parallel text] 92.[101] Sia descritto un cerchio attorno al centro a, e siano tracciati il diametro bac e la corda massima prolungata
              all’infinito che taglia ad angolo retto bac, e sia essa dae
              (cfr. figura 39).

              [image: ]
Fig. 39
Se attorno a un punto di ac, per
              esempio f, che dista da b una lunghezza pari alla corda dell’arco di
              un terzo del cerchio, descriverai un cerchio il cui semidiametro
              è fb, questo cerchio taglierà sulla corda
              maggiore la [linea] retta gh, uguale, o
              quasi, alla metà del cerchio. Infatti, se da b e c traccerai le
              [linee] rette verso g e h, la superficie BGCH sarà uguale o quasi
              alla superficie del cerchio BCDE.

              [image: ]
Fig. 40
[image: link to parallel text] 93. Per
              intendere ciò, descrivi il cerchio BCDE attorno ad a, come prima (cfr. figura 40); traccia la
              corda dell’arco pari a un sesto del cerchio, e sia questo lm, poi [la corda dell’arco pari a] un quarto
              [del cerchio], e sia questo ik, e [la
              corda dell’arco pari a] un terzo [del cerchio], e sia no. Tieni conto che, poiché ogni corda è
              minore del suo arco e nell’arco maggiore la differenza tra
              questo e la corda è maggiore, allora il cerchio, che deve
              passare per b, deve avere il centro sul
              diametro bc e deve tagliare sulla corda
              estesa [una parte] uguale all’arco. Questo cerchio avrà il
              centro necessariamente oltre a, verso c, a una distanza [da b] che è tanto maggiore quanto maggiore è
              l’arco, a cui la corda è sottesa. Il cerchio minimo, di cui non
              si può dare uno minore, avrà il centro in a e il semidiametro ab. Invece, il cerchio massimo avrà il centro
              oltre a verso c,
              alla massima distanza da a, e il
              semidiametro massimo. Questo cerchio deve tagliare sulla corda
              massima una [linea] retta uguale al semicerchio, e questo
              semidiametro massimo è ciò che si cerca.

              [image: link to parallel text] 94. In
              secondo luogo, bisogna assicurarsi che è possibile determinare
              una corda che sia la media [proporzionale] tra le corde poste in
              proporzione ad essa[102]. Definisco corde «in proporzione» quelle corde – di
              cui una è tracciata come minore, l’altra come maggiore –, poste
              in modo che distino dalla [corda di mezzo] una lunghezza pari
              all’arco [compreso tra le corde], come ik
              da lm e da no.
              Infatti, come l’arco il è uguale a in, così lm e no sono dette [corde] in proporzione a ik. Dico che è possibile determinare una
              corda dove entrambe le [corde] in proporzione hanno quadrati,
              che, presi insieme, sono maggiori del doppio del quadrato della
              corda di mezzo. Così, se rispetto alla corda lm si tracciano altre corde in proporzione
              [ad essa], i quadrati di queste saranno sempre maggiori del
              doppio del quadrato di lm. Infatti, si
              può determinare la media proporzionale dove i quadrati delle due
              [corde] in proporzione saranno minori del doppio del quadrato
              della corda di mezzo, come nel caso delle [corde] in proporzione
              a no. Così, si può determinare la corda
              dove i quadrati delle due [corde] in proporzione saranno uguali
              al doppio del quadrato della corda di mezzo, perché, quanto
              minore è il quadrato della corda minore in proporzione rispetto
              al quadrato della corda di mezzo, tanto maggiore è il quadrato
              della [corda] maggiore, e poiché i quadrati delle due [corde] in
              proporzione saranno uguali al doppio del quadrato della corda di
              mezzo, è evidente che questa corda sarà ik. Infatti, la somma del quadrato di lm e il quadrato di no
              sarà eguale al doppio del quadrato di ik.
              Così, anche la somma tra il quadrato della corda maggiore, cioè
              de, e il quadrato della [corda] in
              proporzione ad essa, cioè il quadrato della corda minima, sarà
              eguale al doppio del quadrato di ik. E
              poiché il quadrato della corda minima non può avere alcun
              valore, è chiaro che il quadrato del diametro è uguale al doppio
              del quadrato di ik, cioè del lato del
              quadrato inscritto. Questo è vero e vale per tutte e due le
              corde in proporzione a ik[103].

              [image: link to parallel text] 95. In terzo
              luogo, suppongo che ik superi del doppio
              i due semidiametri, ossia quello del cerchio massimo, che si
              cerca, e quello del cerchio minimo, il cui semidiametro è ab, e questo lo do come noto. Da lì,
              determino due corde in proporzione a ik
              che, prese insieme, saranno uguali ai due semidiametri. Infatti,
              si possono dare corde in proporzione maggiori, cioè, vicine a
              ik, corde minori, massimamente distanti
              da ik e, quindi, anche uguali.

              [image: link to parallel text] 96. In quarto
              luogo, da ciò deduco che no è il
              semidiametro, o quasi, del cerchio che si vuole trovare.
              Infatti, poiché i quadrati delle corde in proporzione uguali ai
              due semidiametri sono uguali al doppio del quadrato di ik e lm è il
              semidiametro del cerchio minimo, se si sottrae il quadrato [del
              semidiametro del cerchio minimo] al doppio del quadrato di ik, resta il quadrato di no. Di conseguenza no
              sarà il semidiametro del cerchio massimo che si vuole
              trovare[104].

              [image: link to parallel text] 97. In quinto
              luogo, deduco che, se no è il
              semidiametro, allora, se su af si trova
              un punto p tale che ap si rapporti ad af
              come la freccia dell’arco ibk si rapporta
              alla freccia del semicerchio DBE, p sarà
              il centro del cerchio e pb il suo
              semidiametro che taglia, sulla corda prolungata da ik, qr, la quale,
              raddoppiata, è uguale a gh. E se
              procederai così per tutte e due le corde in proporzione, e
              troverai il centro facendo il rapporto delle frecce, le parti
              che si formeranno sulle corde prolungate, prese insieme, saranno
              sempre uguali a gh, anche se non ogni
              parte di una delle corde è uguale al suo arco, e così sarà per
              tutte le infinite corde in proporzione ad essa. Con la stessa
              regola potrai trovare [linee] rette uguali al semicerchio. Se
              tuttavia no è il semidiametro, allora
              queste parti non concorderanno. E dunque occorrerà modificare
              [il semidiametro] fino a quando concorderanno. Tuttavia, che la
              superficie BGCH è uguale alla superficie del cerchio risulta
              sufficientemente chiaro da quanto detto sopra.

              [image: link to parallel text] 98. In sesto
              luogo, deduco che le porzioni di cerchio comprese tra corde in
              proporzione si rapportano al cerchio nello stesso modo in cui
              l’arco compreso tra tali corde si rapporta alla circonferenza
              del cerchio. Prendi, per esempio, che la porzione di cerchio
              compresa tra lm e no sia un sesto del[la superficie del]
              cerchio, essendo l’arco ln e l’arco mo un sesto della circonferenza. Infatti,
              quanto più la parte compresa tra ik e lm è minore di un dodicesimo, tanto più la
              parte tra ik e no
              è maggiore di un dodicesimo del cerchio. E da questa
              considerazione potrai ottenere diverse parti di porzioni di
              cerchio e rendere uguali triangoli diversi. Quanto detto sia
              sufficiente.

            
          
        Note a piè pagina
[1] Niccolò V (ca. 1397–1455), il cui vero nome era Tommaso
              Parentucelli, nacque nel 1397 a Sarzana. Egli studiò a Bologna e
              giunse nel 1426 a Roma. Sotto Cosimo dei Medici prese la
              direzione della Biblioteca Fiorentina, nel 1444 fu nominato
              cardinale e vescovo di Bologna, e nel 1447 divenne papa.
              Umanista e amante delle scienze, il pontefice stipendiò
              traduttori per realizzare la versione latina di opere greche,
              fece lavorare filologi alla migliore definizione di testi
              classici, fece trascrivere e comprare manoscritti. Raccolse
              oltre milleduecento manoscritti greci e latini, alcuni di
              eccezionale importanza, che spaziano in molti campi della
              cultura umanistica, arricchendo così la Biblioteca Vaticana di
              molti manoscritti. Cfr. Vasoli 1968, 69–121; Meuthen 1989, 421–499; Manfredi 1994.

            [2] Il De mathematicis complementis è
              l’opera scientifica principale di Cusano sia per lunghezza sia
              per contenuto. Di essa si conoscono due versioni: la prima
              comprende un solo libro, scritto nei primi giorni del settembre
              1453; la seconda comprende un secondo libro scritto il 24
              novembre 1454. Il primo libro fu redatto in parte a Roma, da cui
              Cusano si era allontanato alla fine del maggio 1453, in parte a
              Bressanone, dove il cardinale si recò a fine giugno con la
              missione di riformare la vita spirituale nella sua diocesi. Il
              primo libro suscitò le perplessità del suo amico
              Toscanelli, perplessità che si trovano nella lettera De quadratura circuli e si focalizzano
              sull’ipotesi di una proporzionalità regolare nei poligoni
              intermedi tra il triangolo inscritto e il cerchio
              isoperimetrico: «Da ciò, quindi, è chiaro che se il triangolo ha
              l’ampiezza minima, la prima linea si differenzia al massimo
              dalla seconda, e se il cerchio ha l’ampiezza massima, la prima e
              la seconda linea coincidono, e così sarà, con le debite
              proporzioni, nei poligoni intermedi» (Cusanus 2010i, 7, 1–4). Pare che Toscanelli avesse scosso la certezza di Cusano, tanto che questi
              decise di inviare la lettera a Peurbach per avere il suo parere. Nel frattempo, egli trovò
              nuove dimostrazioni, che espose in un secondo libro, in aggiunta
              al primo. Tuttavia, neanche questi nuovi tentativi soddisfarono
              gli “specialisti” del tempo, perciò Cusano fece un ennesimo
              tentativo di rettificazione nella Declaratio
              rectilineationis curvae. Regiomontano, che all’epoca studiava la quadratura del cerchio e
              conosceva bene quella del cardinale, fu molto critico riguardo a
              I complementi matematici. Il titolo I complementi matematici non deve lasciar
              pensare che si tratti di un’opera integrativa, di rifinura o di
              completamento. L’intento di Cusano è quello di dare compiutezza
              e di perfezionare tutta la geometria, risolvendo definitivamente
              la questione in cui anche il grande Archimede si era imbattutto e aveva fallito, ossia la
              quadratura del cerchio: «a colui che vorrà applicare ancor di
              più la propria mente, ciò che non era conoscibile né conosciuto
              in geometria si paleserà chiaramente. È per questa ragione che
              tale scoperta merita di portare il nome di complemento» (Cusanus 2010i, 40, 8–10).

            [3] La traduzione delle opere di Archimede fu ordinata da Niccolò V a Iacopo Cassiano, detto
              Iacopo da Cremona (ca. 1395–ca. 1454): questi era un ecclesiastico e
              per 14 anni fu allievo di Vittorino da Feltre (ca. 1378–1446) e suo successore come educatore dei
              figli di Ludovico Gonzaga di Mantova (1412–1478). Dal 1449, a
              Roma, Iacopo tradusse manoscritti greci su commissione di Niccolò
              V e nel 1451 fu convocato come esperto per valutare la
              traduzione dell’Almagesto di Tolomeo procurata da Giorgio di
              Trebisonda (1395–ca. 1473) e dichiarata inadeguata soprattutto
              da Bessarione (1403–1472). Anche Iacopo espresse parere negativo e per questo si inimicò
              Giorgio. Morì tra il 1451 e il 1454. La traduzione di
              Archimede fu conclusa sicuramente verso la fine dell’estate del
              1450, fu condotta sul codice A, che andò nelle mani di Lorenzo
              Valla (ca. 1407–1457) e sparì nel corso del sec. XVI. I
              contemporanei, che ignoravano la traduzione duecentesca,
              senz’altro peggiore, del domenicano Guglielmo di Moerbeke (1215–ca. 1286), accolsero con interesse la versione
              del Cassiano. Oltre a Cusano, se ne servì Regiomontano, il quale la trascrisse in vista di una propria più
              accurata traduzione. Servendosi appunto di questa copia (oggi
              codice Cent. V 15 della Stadtbibliothek di Norimberga), portata
              da Regiomontano in Germania intorno al 1468, Thomas Gechauff, detto
              Venatorius (ca.1488–1551) pubblicò la traduzione nell’editio princeps del corpus di Archimede (Archimedes 1544). L’opera denuncia comunque – specie nella resa dei
              passi più complessi – limiti evidenti, dovuti probabilmente più
              all’approssimativa preparazione tecnica del traduttore che a
              un’imperfetta conoscenza del greco. È anche possibile che alla
              morte di Cassiano la traduzione non avesse ancora raggiunto la versione
              definitiva. Come evidenzia Nicolle 1998, nota 1, 82, stando alla ricostruzione di Marshall Clagett (1964–1984a, III, 321–342), Cusano ebbe accesso a questa traduzione e alle sue
              fonti solo a partire dall’anno 1453; cfr. anche D’Alessandro e Napolitani 2012.

            [4] Per «recta» si intende qua, come in tutti gli scritti
                matematici, la linea dritta.

              [5] Cfr. Cusanus 2010j, 1, 2.

              [6] Cusano usa il termine «proportio». Si è preferito qui
                tradurre con «proporzionalità», nella scia di Luca
                Pacioli, che molto probabilmente aveva letto i lavori di
                Cusano, così come le opere di Archimede tradotte in latino, tra il 1449 e il 1453, da
                Iacopo da San Cassiano (Iacobus Cremonensis). Nel 1489, Pacioli si trovava a Roma, e Pierleone da Spoleto lo introdusse nelle corti cardinalizie (cfr. Pacioli 1494; Giusti e Maccagni 1994; Giusti e Martelli 2010 (in part. Ulivi, 19–58); Esteve e Martelli 2011). Cfr. Cusanus 2010j, nota12. Sul procedimento archimedeo tramite la spirale,
                cfr. Cusanus 2010c, 2, 11–18; Cusanus 2010d, 16, 6–12.

              [7] Si è tradotto «figura multiangula» con il termine poligono.
                Cusano intende qui non soltanto poligoni di più lati, bensì
                poligoni regolari e precisamente poligoni isoperimetrici,
                aventi cioè lo stesso perimetro. Cfr. Cusanus 2010b. Anche nel caso di «figura (o superficies)
                poligoniae», «multiangulae», o «figura quadrata» o «figura
                circolare» si tradurrà semplicemente con poligono, quadrato,
                cerchio ecc. a meno che il contesto non richieda
                diversamente.

              [8] Dal momento che è chiaro che Cusano intende per «potentia»
                la seconda potenza, si tradurrà semplicemente con
                «quadrato».

              [9] Si suppone implicitamente che i poligoni siano tutti dello
                stesso perimetro (isoperimetrici). Il riferimento è a
                Euclide, che riguarda in realtà soltanto il pentagono:
                «Intorno a un cerchio dato circoscrivere un pentagono sia
                equiangolo che equilatero» (Euclide 2007, IV, 12, 963) e non tutti i poligoni regolari.

              [10] Per «figura rectilinea» si intende una figura delimitata da
                lati dritti. Il termine «figura» è reso a volte alla lettera,
                a volte con «poligono», a seconda del contesto.

              [11] Cfr. Cusanus 2010b, 5, 5–8; Bradwardine 1495b, II, 5, concl. 5 («circulus autem totus est angulus»). Il
                ragionamento di Cusano s’incentra sull’idea che il cerchio ha
                ovunque angoli, per cui è come un poligono regolare con un
                numero infinito di angoli.

              [12] Come si è tradotto «trigonus», «triangulus» con
                «triangolo», così si è tradotto «tetragonus» con «quadrato».
                Qui si afferma per la prima volta che si tratta di poligoni
                regolari di ugual perimetro. Il fatto che [image: \rho_n] cresce con n crescente mentre r
                decresce, viene utilizzato infra, I. 4 e in I. 10 ciò viene
                espresso con delle modifiche.

              [13] Per «peripheria» s’intende la linea di contorno. A seconda
                della figura, si tradurrà con perimetro o circonferenza.

              [14] Cfr. Cusanus 2010i, 21 e 10.

              [15] Per rispettare al meglio lo spirito del linguaggio
                cusaniano, a differenza sia di Hoffmann che traduce
                «capacitas» con «Fläche» (Hofmann e Hofmann 1980, 71), sia di Nicolle che traduce il termine latino con
                «Surface» (Nicolle 1998, 54), si è preferito in questo caso differenziare i due
                termini (capacitas e superficies), utilizzati entrambi da
                Cusano, rendendo il latino capacitas
                con ampiezza. In altri passi si è tradotto con estensione o
                superficie.

              [16] Cfr. Cusanus 2010j, 3, 1–7; Cusanus 2010i, 18.

              [17] Si trova qui l’idea del cerchio come poligono regolare di
                un numero infinito di lati.

              [18] «erit sic proportionabiliter in mediis polygoniis»: è
                questa la proposizione più discutibile, oggetto di critica da
                parte di Toscanelli. In una nota a margine scritta di proprio pugno nel
                manoscritto Cu (Gestrich 1992, 219, 52r), si fa riferimento all’obiezione sollevata da
                Toscanelli, che mette in dubbio l’esattezza di tale
                proporzionalità. Si tratta di uno scritto indirizzato al
                cardinale e più tardi inoltrato a Peurbach (Cusanus 2010a). Da ciò l’esigenza da parte di Cusano di aggiungere
                il secondo libro dei Complementi
                matematici (cfr. Cusanus 2010i, nota1; Cusanus 2010j, 3, 9–15; Cusanus 2010i, 22).

              [19] Cusano scrive «superficies quadrangularis». A differenza
                del termine «tetragononus», l’espressione «figura
                quadrangularis» – come anche «quadrangulus» – è equivoca:
                Cusano la riferisce tanto al quadrato quanto al rettangolo e
                al parallelogramma. Di volta in volta, a seconda del contesto,
                si renderà «quadrangularis» con la figura corrispondente.
                Sull’utilizzo, da parte di Cusano, del termine «quadrangulus»
                invece di «quadratus» e sull’influenza dalla terminologia
                matematica medioevale, cfr. Hofmann 1966, 98–136, spec. 105.

              [20] Cfr. Cusanus 2010b, 38 e Cusanus 2010j, 2, 1–3; una versione più precisa si trova in Cusanus 2010i, 17. Cusano poteva leggere la prop. 1 de La misura del cerchio di Archimede in Bradwardine 1495b, III, 6, concl. 5e in Da Novara 2005, VI, 13.

              [21] Cfr. Cusanus 2010j, 2, 8–11; una versione più precisa si trova in: Cusanus 2010i, 33. È il riferimento più frequente di Cusano agli Elementi di Euclide: «Sottrarre dalla retta data la parte prescritta»
                (Euclide 2007, VI, prop. 9, 1041).

              [22] L’allusione è a Bradwardine 1495b, II, 5, concl. 1 (hysoperimetrum); II,4,concl.2 (poligonium); II,1 (isopleurus); Gerbertus 1899, V, 3 (hysopleuros); cfr. anche Cusanus 2010b, 4, 1–3; Cusanus 2010j, 2, 5–8. Nel manoscritto di Bruxelles si fa inoltre
                riferimento alle argomentazioni di Roger Bacon sulle figure
                isoperimetriche (specie nella formulazione della Prop. 13),
                soprattutto alla proprietà isoperimetrica della sfera, di cui
                si parla anche in Bradwardine 1495b, II, 5, concl. 5, e si legge la spiegazione dal greco del termine isoperimeter fornita nella concl. 1 di
                Bradwardine 1495b, II, 5. Sul tema degli isoperimetrici, cfr. Cusanus 2010b.

              [23] Come in tutti gli scritti matematici, Cusano utilizza il
                termine «diameter» per indicare la diagonale in base a una
                etimologia inesatta da «δύο»
                e «µετρεĩν» (che divide in
                due) ripresa da Bradwardine (1495b, II, 1, concl. 8: «linea diagonalis quae ducitur ab angulo ad angulum
                […] in quadrato vocatur diameter»). Una fonte chiara è Pisanus 1862, 2. Alla fine del Quattrocento si trova ancora il
                termine diametro per designare la diagonale del quadrato
                nell’opera di Luca Pacioli: «Si ha costume di parlare di diametro anche per i
                quadrati: ecco (è) perché, al fine di evitare qualunque
                equivoco, si dice diametro del cerchio e diametro del quadrato
                per differenziarli» (Pacioli 1509, I, 71, 133). Cfr. anche Cusanus 2010g, 4 e Cusanus 2010d, 26.

              [24] Cfr. Cusanus 2010i, 5, 7–10; Cusanus 2010b, 36, 9–11; e Cusanus 2010j, 2, 5–8.

              [25] Cusano scrive «embadum», termine che si ritrova in Bradwardine 1495b, 75r–81v: «In trigono ortogonio cuius podismus est pedum
                xxv embadum»; in Oresme 1966, f. 240r: «In trigono ortogonio cuius podismus est pedum
                xxv embadum». Cfr. anche la Practica
                geometriae di Leonardo Pisano: «ad quam mensuram colligere embada, hoc est areas
                camporum, monstrabo» (Pisanus 1862, II, 3).

              [26] Il termine «aequalis» è reso con «uguale» lasciando al
                contesto di chiarire se si tratta di uguaglianza di lunghezze,
                di superfici o di volumi. In questo caso è chiaro che si
                tratta di una equivalenza.

              [27] Per una dimostrazione, cfr. Hofmann e Hofmann 1980, nota 21, 217. Qui il riferimento è al libro I del De sphera et de cilindro di Archimede (Archimedes 1910a; Archimede 1974, 69–180).

              [28] Il termine «similis» è reso con «simile», lasciando al
                contesto di chiarire se si tratta di uguaglianza, di
                somiglianza, di corrispondenza. Cfr. Cusanus 1994, 5, 6ss..

              [29] Come nota Hofmann e Hofmann 1980, nota 23, 218, con la divisibilità illimitata del continuum si tocca un argomento discusso
                con fervore da molto tempo nella scuola nominalistica di
                Parigi.

              [30] Cfr. Cusanus 2010b, 36, 7–9; Cusanus 2010i, 8, 1–4; Archimedes 1910b, prop. 1 in Bradwardine 1495b, III, 6, concl. 5.

              [31] Cfr. Cusanus 2010i, 6, 6–II. Questa è la tesi principale dei trattati più
                antichi sulle figure di ugual perimetro; cfr. Busard 1980, prop. 6, 80; Bradwardine 1495b, II, 4, concl. 5; De Muris 1998, 315ss. Sul tema, cfr. Gericke 1982, 160–187; Di Meglio 2010, 15–21; Heath 1921, II, 211; Porter 1933.

              [32] Cfr. Bradwardine 1495b, II, 4, concl. 1; II, 4, concl.2; II, 4, concl.5, dove si dà la seguente dimostrazione: «Se abc è un triangolo equilatero e adce un rettangolo con superficie e altezza
                uguali ad esso, il perimetro del triangolo è maggiore del
                perimetro del rettangolo. Se dunque il rettangolo ADGF viene
                trasformato in triangolo di ugual perimetro, la sua superficie
                è maggiore di quella del triangolo ecc.». Bradwardine sostiene che questo procedimento si può
                generalizzare, ma tralascia la singola esposizione. Cfr. anche
                Busard 1980, prop. 1, 69.

              [33] Cfr. Cusanus 2010j, 3, 9–15; Cusanus 2010i, 7, 1–3. Se si indica con f la
                superficie del cerchio, con n il numero
                dei lati del poligono, con [image: f_n] la sua superficie, con [image: \sigma_n] il
                semidiametro del cerchio iscritto (la linea “prima”) e con
                [image: r_n] il
                semidiametro del cerchio circoscritto (la linea “seconda”),
                allora: [image: f–f_n]
                diminuisce al diminuire di [image: r_n–\sigma_n]. Dunque, s’intende la
                decrescita “regolare” di [image: f–f_n] con [image: r_n–\sigma_n] decrescente. Il carattere
                puramente ipotetico dell’impostazione viene ulteriormente
                sottolineato dalla formulazione iniziale “se si pone”.

              [34] Questa prima ipotesi significherebbe, come risulta dal
                calcolo successivo, che [image: r=\sigma_3+(r_3–\sigma_3)=\sigma_n+(r_n–\sigma_n)].
                Cusano ipotizza dapprima [image: \sigma_3=7] quindi [image: r_3=14], come era già
                accaduto in Cusanus 2010g, 10; ne risulta [image: r=14]. Cusano parte dunque da [image: \sigma_4= 10], quindi
                [image: r_3=14] che è
                approssimativamente esatto perché [image: r_4^2=2\sigma_4^2]. Anche in questo
                caso ottiene [image: r=14]. Nel suo calcolo la questione
                viene gestita all’esatto contrario. Se qui [image: \sigma_n] non avesse il
                valore esatto, bensì maggiore, [image: f_n=(\frac{u}{2})\sigma_n] ad esso
                appartenente, sarebbe troppo grande come pure il secondo che
                risulta da [image: r_n=\sigma_n+(r_n–\sigma_n)]; ne
                consegue che [image: f_n] appartenente alla seconda sarebbe
                troppo piccolo ecc.

              [35] In questo caso si è reso il termine «portio» con «parte»;
                si è preferito utilizzare il termine «parte» in riferimento
                alle porzioni di linea retta, ossia ai segmenti, o di linea
                curva, mentre si è utilizzato il termine «porzione» per
                esprimere la parte di una superficie, in genere riferita a un
                segmento circolare o a un settore circolare.

              [36] Questa seconda ipotesi significherebbe: [image: r=\sigma_3+\lambda(r_3–\sigma_3)=\sigma_n+\lambda(r_n–\sigma_n)];
                dove per [image: \lambda] s’intende una frazione. Questo
                paragrafo e il successivo mancano in 7 dei manoscritti più
                antichi a noi noti de I Complementi
                matematici.

              [37] Ciò che qui è interessante, al di là dei casi particolari
                usati da Cusano, è l’intuizione di una funzione di [image: f_n=\sigma_n+\lambda(r_n–\sigma_n)] per
                [image: n>3] che
                cresce in modo monotono o decresce in modo monotono. Se qui
                [image: f_m=f_n],
                allora la funzione è costante. Il valore della funzione ad
                esso appartenente può essere determinato mediante [image: n\to\infty] come r.

              [38] Per «aliquota» s’intende: contenuta un numero intero di
                volte, ossia un sottomultiplo intero. Cfr. Bradwardine 1495b, 68: «pars autem aliquota est illa quae, aliquotiens
                sumpta, reddit aequaliter summum suum. Pars vero non-aliquota
                est illa quae nullatenus, aliquotiens sumpta, reddit
                aequaliter summum suum» («Una parte aliquota è invero quella
                che, presa un determinato numero di volte, dà come risultato
                il suo tutto. Una parte non aliquota è quella che, presa un
                qualsiasi numero di volte, non dà come risultato il suo tutto»
                (in Clagett 1964–1984a, 493. trad. nostra).

              [39] Si veda la formulazione, leggermente diversa, in Cusanus 2010j, 3, 9–15.

              [40] Per «aequalem» si intende qui «della stessa lunghezza».

              [41] Ciò si richiama al procedimento desunto in Cusanus 2010j, 4–5, ma vi è un’ abbreviazione del testo e una lieve
                modifica della figura.

              [42] Cfr. Cusanus 2010j, 4–5.

              [43] Cfr. Cusanus 2010j, fig.~3; Da Novara 2005, IV, 9. Questa figura ha portato John Wallis (1616–1703) a credere, a torto, che Cusano avesse
                avuto l’intuizione della costruzione e delle proprietà della
                cicloice. Cfr. lo scambio epistolare tra Wallis e Leibniz, in: Leibniz 1849–1863, IV, 5–82, spec: Wallis–Leibniz, 4/5/1697 e 11/12/1697 (9–10); Leibniz–Wallis, 29/3/1697 (13); Leibniz–Wallis, 7/6/1697 (27).

              [44] Riecheggiano in questo passo le ultime frasi del Cusanus 2010j, 11, 4–5; 12, 1–5: «è la suprema perfezione dell’arte geometrica, alla
                quale fino ad oggi non risulta che gli Antichi siano
                pervenuti. L’arte delle trasformazioni geometriche, […] è ora
                sufficientemente compiuta poiché essa ha portato alla
                quadratura del cerchio. E noi pensiamo che niente più di
                quanto c’è da sapere in geometria resterà nascosto a colui che
                vorrà ricercare con diligenza in questo campo». Poco più
                avanti Cusano, per indicare il seno utilizza l’espressione
                «semicorda dell’arco doppio» secondo un’invenzione indiana
                tramandata dagli arabi all’occidente medievale (cfr. Taton 1957–1958, I, 161). Cfr. Cusanus 2010m, 1, 11ss.; 8, 1–4.

              [45] Letteralmente: «multiangula similium laterum».

              [46] L’espressione latina è «medietas duplae», già utilizzata ne
                Le trasformazioni geometriche (Cusanus 2010b, 40) e ne La quadratura del
                cerchio (Cusanus 2010j, 9, 8), è un’espressione idiomatica intraducibile in sè,
                ed è legata al problema della duplicazione del cubo.
                Algebricamente si tratta della radice di 2. Vescovini (1972, nota 10) sottolinea che l’espressione si rifà alla
                tradizione matematica medievale con cui Cusano allude alla
                dimostrazione dell’irrazionalità della [image: \sqrt{2}], spesso citata in
                Aristotele e menzionata anche in Oresme 1966, 160 e in Bradwardine 1495b, III–1. Oresme chiama il rapporto [image: \frac{a^2}{b^2}] la metà di [image: \frac{a}{b}] (cfr. Oresme 1966, 454). La proportio proportionum,
                cioè la proporzione tra due rapporti [image: \frac{\sqrt{a}}{\sqrt{b}}] e [image: \frac{a}{b}] è espressa
                dal rapporto [image: \frac{1}{2}]. Se la proportio dupla è il quadrato, la metà,
                ossia la medietas duplae, è la radice.
                Cfr. Oresme 1966, 454; Pedersen 1953, 1–134ss. Cusano si riferisce a questa terminologia
                matematica di Bradwardine, di Oresme e di altri studiosi interessati agli
                incommensurabili e ai rapporti irrazionali. Sul tema, cfr.
                Rommevaux 2003, 401–418.

              [47] Cfr. Cusanus 2010j, 9.

              [48] Si ritrova, parola per parola, la fine di Cusano 2010j, 10–11, con gli stessi valori numerici.

              [49] Il riferimento è al primo scritto matematico, il De geometricis transmutationibus.

              [50] Cusano parla di «sectores».

              [51] La scoperta di Cusano è che in ogni poligono la differenza
                fra l’apotema (prima linea) e il raggio del cerchio
                isoperimetrico al poligono è un segmento minore della freccia
                che ha con quest’ultima un rapporto costante.

              [52] Qui termina la prima versione dei Complemeti matematici. In Cu è stata aggiunta una nota a margine del
                testo tramandata nelle copie posteriori e ripresa anche nelle
                diverse edizioni a stampa nonostante non appartenga al testo.
                Aggiunto in Bl, essa recita: «Se questa
                scoperta è vera, accade che la linea tracciata dalla prima
                linea del triangolo alla prima del cerchio isoperimetrico
                passa attraverso le prime rette di tutti i poligono intermedi.
                Ma se non è vero che la linea passa in questo modo, e se fosse
                invece vero che una curva di una qualche curvatura passi dalla
                prima del triangolo attraverso le prime di tutti i poligoni
                fino alla prima del cerchio, allora questa scoperta non
                sarebbe sufficiente. E poiché il dubbio c’è, ho apportato in
                un secondo libro altre mie invenzioni che fugano il dubbio in
                questione».

              [53] In questo caso il termine «aequalis» sta a significare che
                il movimento di b descrive una linea
                che ha la stessa lunghezza del lato bc.

              [54] Cusano considera «aequaliter» il movimento che concerne o
                la rotazione di un segmento (intorno ad un asse attraverso una
                delle sue estremità) o lo spostamento di un segmento
                perpendicolare alla sua direzione o infine lo spostamento di
                un segmento nella sua direzione. Sebbene intuisca il “fluido”
                andamento del movimento, ciò che a Cusano interessa è
                soprattutto la relazione geometrica del movimento ipotizzato
                (cfr. Hofmann e Hofmann 1980, 221, nota 41).

              [55] Si trovano qui tre figure assolutamente identiche a tre
                configurazioni descritte da Oresme. La prima è la rappresentazione del movimento di
                una linea ab che ruota intorno ad a; la seconda la rappresentazione del
                movimento uniforme di una linea ab;
                infine vi è la rappresentazione della generazione dei cerchi
                mediante il movimento di una linea ab
                che ruota completamente intorno ad a.
                Questa coincidenza suggerisce che Cusano abbia letto il
                trattato di Oresme.

              [56] Cfr. De Tinemue 1964, prop. 1, cor., 458, 105–460, 107.

              [57] La figura 18 è invertita da sinistra a destra in Cu. Cusano non dispone della
                rappresentazione in prospettiva, che rende possibile oggi la
                comprensione delle sue figure.

              [58] Si tratta in pratica del tronco di cilindro.

                [image: ]
[59] Cfr. De Tinemue 1964, prop. 1, 450, 1–5.

              [60] Il termine tecnico «ductio» significa a volte il movimento
                di costruzione geometrica, a volte l’operazione aritmetica di
                moltiplicare. Come Hofmann suggerisce (Hofmann e Hofmann 1980, nota 55, 223), è probabile che il primo modo in cui Cusano
                utilizza tale termine abbia influenzato l’utilizzo di esso
                come metodo geometrico d’integrazione e ipotizza un’influenza
                diretta di Cusano (i cui scritti erano assai conosciuti
                all’epoca) su Gregorio di San Vincenzo (1584–1667), il quale nell’Opus
                geometricum ad mesolabum per rationum, proportionalitatumque
                novas proprietates  parla appunto di «ductus plani in planum» (Di San Vincenzio 1668, VII, 241ss.).

              [61] Con «avanzamento» e «arretramento» si traducono i termini
                «progressio» e «descensio».

              [62] Le figure 18 e 19 sono invertite da sinistra a destra nel
                Codex Cusanus 219 (Gestrich 1992).

              [63] Per «quadrangulus rectilineus» Cusano intende qui un
                parallelogramma.

              [64] Si può comprendere così la figura (mantello di tronco di
                cono):

                [image: ]
mediante la rotazione di ab risulta
                la superficie del cerchio [image: ab^2]. Nello stesso tempo ab si eleva sull’altezza ad generando un anello circolare.

              [65] «rombhus» è il termine utilizzato da Cusano per intendere
                un solido formato da due coni uguali.

              [66] Riportiamo qui la figura tratta da J. M. Nicolle (Nicolle 1998, 85, nota 34) che ben rappresenta il movimento di generazione
                delle coniche pensato da Cusano.

                [image: ]
[67] Il «rombhus» di cui parla Cusano è il solido generato dalla
                rotazione del triangolo attorno alla base, ossia un solido
                risultante dall’unione di due coni, congruenti con la base
                comune e con i vertici opposti rispetto al piano della base.
                L’altezza del triangolo è il raggio dei due coni, mentre
                l’altezza di ciascuno dei due coni ha misura pari a metà della
                misura della base. La conclusione di questo paragrafo («Sai,
                dunque, che, quando il cono e il cilindro hanno la stessa base
                e il lato del cono è uguale all’altezza del cilindro, la
                superficie del cilindro è sempre doppia rispetto a quella del
                cono, e se è maggiore dell’altezza del cilindro, la superficie
                sarà maggiore, e se è minore dell’altezza del cilindro, la
                superficie sarà minore, in maniera proporzionale»), riprende
                Johannes de Tinemue. Cfr. De Tinemue 1964, I, prop. 2 cor. 462, 23–26.

              [68] La figura è preceduta da una figura intermedia nel Codex Cusanus 219 (Gestrich 1992), che porta alle sfere (cfr. Nicolle 1998, 85, nota 34).

              [69] «Alia curvitate curvae»: il termine «curvitas» è equivoco,
                significando a volte la quantità d’inflessione della curva, a
                volte l’essenza dell’essere curvo (cfr. Hofmann e Hofmann 1980, nota 49, 222). L’espressione «curva aliqua curvitate» potrebbe
                avere un senso ontologico: sarebbe una curva che
                parteciperebbe dell’essere curvo. Qui Cusano vede la soluzione
                – la funzione asintotica – ma la scarta subito. Cfr. anche
                Cusanus 2010e, 10. Facendo seguito alla dottrina di Oresme sulle latitudines formarum
                (cfr. Oresme 1968), con «curvitas uniformiter difformis» bisogna
                intendere una curva avente una variazione di curvatura
                costante. Tuttavia, vista la non chiarezza da parte di Cusano,
                non ci è dato sapere che tipo di curvatura egli abbia in
                mente. Sul tema, cfr. Hofmann e Hofmann 1980, nota 6, 234.

              [70] Cfr. Archimedes 1910a, I, 33: «la superficie di ogni sfera è quadrupla del suo
                cerchio massimo» (tr. cit., p. 152); Johannis de Tinemue (1964, I, prop. 6, 480, 42ss.); Busard 1980, prop. 7.

              [71] Nel testo dei manoscritti e delle prime stampe si trova per
                errore «pyramidalis», anziché «columnalis». Omnisanctus notò l’errore e lo corresse nell’edizione p.

              [72] Si tratta delle sezioni coniche che risultano dalla
                rotazione della figura intorno all’asse ad. La figura considerata si ritrova nel
                primo tentativo di rettificazione nella prima parte del
                secondo libro, dove Cusano determina un tronco di cono il cui
                mantello è uguale alla superficie della semisfera.
                L’approssimazione viene generalizzata poco più tardi a tutti
                quegli archi più piccoli del settore circolare.

              [73] L’espressione latina è «per aequalem scilicet
                inaequalitatem».

              [74] Per «sectio trasversalis cylindri» bisogna intendere una
                sezione obliqua di cilindro, vale a dire un’ellisse; quanto
                alla «sectio obliqua sferica» Cusano sembra dimenticare che si
                tratta molto semplicemente di un cerchio.

              [75] Il testo parla dell’eccesso della corda rispetto alla
                freccia mentre ab è una semicorda; si
                ha [image: ea=ab–ac=\text{semicorda}–\text{freccia}].

              [76] In tutti i manoscritti si trova l’espressione «excessus
                arcus super sagittam», tuttavia con esso sicuramente s’intende
                «excessus semichordae super sagittam». La correzione fu
                effettuata anche da Omnisanctus nell’edizione p.

              [77] Come osserva Hofmann (Hofmann e Hofmann 1980, nota 57, 223), la regola esposta è inesatta; essa può essere
                risultata da generalizzazioni di particolari osservazioni su
                un sesto di cerchio.

              [78] Cfr. Cusanus 2010g, 31–33. Secondo Hofmann la dimostrazione che segue non vale
                che per un angolo di 60 gradi e a condizione di accettare
                un’ampia approssimazione. Tutto il procedimento è esposto in
                Hofmann e Hofmann 1980, nota 59, 223.

              [79] In Cu le figure dal 52 al 54 sono
                ruotate di 90 gradi, con ad a formare
                la base (cfr. Gestrich 1992).

              [80] Dalla prop. 32 del libro II degli Elementi di Euclide si ha che [image: \text{l’angolo }cbg=\text{l’angolo                 }bef]. Poniamo sulla linea prolungata bc il segmento [image: bx=be], cosicché il triangolo BGX [image: =] il triangolo EFB. Da ciò segue (Euclide 2007, III, 20) che il punto g si trova sull’arco xgb congruente all’arco bfe. Se si pone il raggio di entrambi i
                cerchi in questione con la lettera r,
                si ha che: [image: bg=ef=1,1580r]; [image: fg=0,8237r] e [image: bh=1,5699r]. Questo risultato è
                piuttosto preciso (poiché l’arco misura 1,5708r), ma resta al di sotto del limite di
                Archimede (1,5704 r).

              [81] Il ragionamento di Cusano è il seguente: [image: \frac{(bg+ef+fg)}{2}=bg+[\frac{(ef–bf)}{2}]].
                Poco più avanti (64, 1–5) dalla dimostrazione che segue si
                capisce che il medium deve essere posto
                in relazione alla differenza tra le corde. Cusano non era
                ancora del tutto convinto di tale dimostrazione e pertanto
                cercò di dare una delucidazione più chiara, ma ancora
                insufficiente, nella Declaratio
                rectilineationis curvae, indirizzata a Peurbach.

              [82] Anche con quest’altro tentativo risulta un’approssimazione
                al di sotto del limite di Archimede. Infatti, l’angolo [image: pqe=\frac{1}{2}135^°]; q si trova dunque sull’arco di
                circonferenza attraverso b ed e, il cui centro taglia a metà l’arco be. Da ciò risulta che [image: ep+pq=1,57058ab], mentre
                l’arco [image: be=1,57080                 ab]. Questa approssimazione resta dunque al di sotto
                del limite archimedeo di 1,57042 ab. Se
                il punto di divisione q si trova su c, allora [image: eb+bc>\text{arco }eb]; se esso si
                trova su d, allora [image: ep+pd<\text{arco }eb]. Cusano deduce
                che esiste un punto intermedio tale che [image: ep+pq=\text{arco }eb]. È
                chiaro che la somma [image: ep+pq] aumenta continuamente quando p si muove sull’arco eb verso b, ma il
                punto di partenza del moto non è c: è
                il punto di intersezione di bd con
                l’arco eb. Il punto r non può essere dunque a destra, ma a
                sinistra di p.

              [83] Il testo che segue contiene una generalizzazione delle
                prime proposizioni sui tronchi di cono aventi la stessa
                superficie laterale. Per «semicorda del doppio arco», si
                intende il seno. Cfr. infra, nota
                46.

              [84] Cfr. Archimedes 1910a, I, 42: «la superficie di qualunque segmento sferico minori
                di un emisfero è uguale ad un cerchio il cui raggio è uguale
                al [segmento di retta] condotto dal vertice della sezione
                sulla circonferenza del cerchio base del segmento sferico».
                Cfr. anche Archimedes 1910a, prop. 43 e De Tinemue 1964, prop. 3 (532, 1–6).

              [85] Archimede, nel De Quadratura parabuli,
                scrive: «…qualunque segmento compreso da una retta e da una
                sezione di cono rettangolo è quattro terzi del triangolo
                avente la stessa base della sezione e altezza uguale» (Archimede 1974, prop. 505). Hofmann e Hofmann 1980, nota 72, 227 evidenzia che, nel definire la parabola, egli si
                rifà all’antica scuola di geometria di Menecmo (ca. 380 a.C.–
                ca. 320 a.C.), allievo di Eudosso, noto per la sua basilare
                scoperta delle sezioni coniche e per aver dato una soluzione
                all’annoso problema della duplicazione del cubo servendosi
                appunto di sezioni coniche: parabola e iperbole.

              [86] Anche qui Cusano parla della possibilità di rettificare la
                curva per approssimazione continua; non di quella esatta che
                egli, da fedele aristotelico, considerava razionalmente
                impossibile. Egli immaginava di poter ottenere l’estensione
                della parabola e dell’ellissi dalla superficie usando il
                procedimento contrario a quello sopra indicato. Quando parla
                di una linea avente una «curvitatem regularem», Cusano intende
                evidentemente un arco senza punti di flessione con una
                curvatura che si modifica continuamente, come si riscontra
                nell’esempio indicato dell’ellissi.

              [87] Questa strada d’accesso alla quadratura del cerchio,
                inaugurata da Ippocrate di Chio, non risulterà utile a Cusano, tanto più che egli
                confonde lunula e segmento circolare. Cfr. Cusanus 2010c, 6, 3–5.

              [88] L’espressione latina è «triangulus rectilinealis», ossia
                delimitato da lati dritti.

              [89] In questo caso si tratta di eguagliare il settore
                circolare.

              [90] Il ragionamento di Cusano è il seguente. Se si pone
                [image: ①] = prima
                linea; [image: ②] =
                seconda linea, [image: ③] = terza linea e [image: ④] = quarta linea,
                allora si ha che: Se si pone: [image: \frac{④^2}{①^2}=\frac{(④^2–③^2)}{(②^2–①^2)}].
                Da ciò segue che, se [image: (②^2>①^2)] e se [image: ④^2=②\times①^2], allora
                [image: ④^2>②\times③^2]. Cfr. Hofmann e Hofmann 1980, nota 75, 228 e Nicolle 1998, nota 51, 86.

              [91] Si cerca la terza linea kl. Se
                [image: ao=7]; [image: ①=bc=\sqrt{2ao^2}=\sqrt{98}]; [image: ②=gh=11;④=\sqrt{4ao^2}=\sqrt{196}=14].
                Applicando la relazione: [image: \frac{4^2}{1^2}=\frac{(④^2–③^2)}{(②^2–①^2)}],
                si ha [image: \frac{196}{98}=\frac{(196–③^2)}{(121–98)}],
                ossia [image: \frac{2}{1}=\frac{(196–③^2)}{23}]. Si
                ha dunque che [image: 46=196–③^2]; [image: ③^2=196–46=150] e [image: ③=\sqrt{150}=12,25].

              [92] Cusano pone il semidiametro [image: ac=7]; [image: ab=\frac{7}{2}]; [image: cd=ac=7]; [image: eb=ab=\frac{7}{2}];
                [image: ad=\sqrt{(ac^2+cd^2)}]; [image: df=ac]. Subito dopo la
                descrizione il discorso diventa molto generale e non c’è una
                vera dimostrazione. Cusano conclude dicendo semplicemente:
                «apporta le opportune modifiche finché risulti così».

              [93] Cusano intende per «aequatrix» una linea parallela alla
                tangente e perpendicolare al raggio, tale che essa tagli due
                sezioni uguali, l’una nel cerchio sotto il punto di tangenza;
                l’altra fuori del cerchio sotto l’equatrice.

              [94] Cusano intende per «linee di complemento» le semicorde del
                poligono inscritto corrispondenti ai semilati dei poligoni
                tangenti al quadrante, ossia del poligono circoscritto. Egli
                giustifica questa dimostrazione poco più avanti.

              [95] Tutti i manoscritti e le prime stampe presentano qui
                erroneamente bk al posto di ck. In p
                Omnisanctus corresse l’errore.

              [96] Se [image: gl+fm=\text{semilato del quadrato}],
                allora, se [image: \frac{di}{gl}=\frac{(bc+de)}{(bf+gh)}],
                e se [image: fe=\frac{ck}{fm}], allora [image: di+ok=\text{semilato del                 triangolo}]. Per una puntuale analisi di questa
                costruzione, cfr. Hofmann e Hofmann 1980, nota 85, 230, in cui si mostra che il ragionamento cusaniano dà
                buone approssimazioni nel caso di differenze relativamente
                insignificanti.

              [97] Il termine latino è «sectores». Cfr. Cusanus 2010d, 28.

              [98] Con «proporzionalità» qui si intende un rapporto
                esprimibile con un numero intero.

              [99] Il termine latino è «curvam peripheriam», che, sebbene
                abbia un’estensione semantica maggiore di arco di
                circonferenza, è inteso da Cusano nel suddetto significato,
                visto che fa riferimento al libro primo, in cui si affronta
                precisamente tale problema.

              [100] Quest’ultimo paragrafo, menzionato come Vacat, è cancellato nel folio 65v di Cu (Gestrich 1992).

              [101] Il titolo è scritto in rosso in Cu
                  (Gestrich 1992).

                [102] Per meglio rendere il concetto, si è tradotto qui il
                  termine «comparates» con la perifrasi «corde in
                  proporzione». Le «corde comparate» sono una nozione nuova
                  introdotta da Cusano, non riscontrabile in altri autori.

                [103] [image: 2ik^2=lm^2+no^2] e [image: 2ik^2=de^2+\text{la corda                   minima}^2]; dunque: [image: 2ik^2\approx de^2] e [image: ik=\text{il lato del                   quadrilatero iscritto}].

                [104] Hofmann e Hofmann 1980, nota 94, 233 rimanda al secondo capitolo del De geometricis transmutationibus dove
                  Cusano enuncia, e tenta di dimostrare, la tesi generale che
                  vale per tutte le sezioni del cerchio comprese tra corde in
                  proporzione al lato ik del
                  quadrato.

                
  Spiegazione di come rettificare una curva,
              così come è esposta nel primo procedimento del secondo libro de
              I complementi matematici

              
          
            Prima ipotesi

            [image: link to parallel text] 1. La sesta [linea], sommata alla metà della
            parte[1] della quinta, che cade tra la curva e la quarta, può
            essere uguale alla curva be[2]. Questa ipotesi è esatta, come è dimostrato nello
            scritto[3](cfr. figura 1).

            [image: ]
Fig. 1

          
            Seconda ipotesi

            [image: link to parallel text] 2. La sesta, sommata alla metà del segmento
            [della quinta], e la quinta sommata alla metà della differenza tra
            la corda, che è la sesta, e parte della quinta, che pure è una
            corda, possono essere uguali al doppio della curva be. Questa ipotesi è dimostrata, come quella
            precedente, nel testo[4]. Ci può essere infatti un caso dove questa somma è
            maggiore del doppio della curva be, un caso
            dove essa è minore, come pure uno dove essa è uguale[5].

            [image: link to parallel text] 3. Dico che questa seconda ipotesi non ha luogo
            se non laddove la differenza è uguale al segmento [della quinta],
            e ciò dimostra la prima ipotesi. Infatti, se dicessi che nella
            seconda ipotesi la differenza è maggiore del segmento [della
            quinta], allora la quinta sarebbe minore della sesta. La quinta è
            uguale alla sesta, quando la differenza delle corde è uguale al
            segmento della quinta, è minore se la differenza è maggiore, ed è
            maggiore se la differenza è minore, come è evidente da sé[6].

            [image: link to parallel text] 4. Sia dunque aggiunta alla sesta l’intero
            segmento e alla quinta l’intera differenza. Così [la sesta e la
            quinta] saranno uguali e ciascuna [sarà] maggiore della curva be. Se dunque si sottrae una [lunghezza] uguale
            cosicché ciascuna sia uguale alla curva be,
            allora è necessario sottrarre dalla somma tra la sesta e il
            segmento [della quinta] più della metà del segmento, quando si
            pone il segmento minore della differenza, mentre bisogna sottrarre
            dalla differenza meno della metà– e tanto meno della sua metà,
            quanto più della metà del segmento di prima – così che restino
            contemporaneamente la metà del segmento e la metà della
            differenza, che, aggiunte alla sesta e alla quinta, risultano il
            doppio della curva be, come è evidente da
            sé. Dunque la sesta, aggiunta alla metà del segmento [della
            quinta], sarà maggiore della curva be; e
            non uguale alla curva be, poiché la
            differenza supera la parte[7].

            [image: link to parallel text] 5. Supponi che la quinta bg aggiunta alla metà della differenza tra la
            sesta fe e la corda della quinta bg, e la sesta ef
            aggiunta alla metà del segmento fg siano
            contemporaneamente uguali al doppio della curva be, e che la differenza tra ef e fb sia maggiore di
            fg. Sia dunque la linea hi uguale alla quinta bg, a cui si somma la differenza, che sarà
            uguale a ik. Sotto la linea data sia
            tracciata un’altra linea lm uguale alla
            sesta fe, alla quale si aggiunge il
            segmento fg, e sia mn uguale a fg; la linea
            hk è uguale alla linea ln. Si segni la metà della differenza, che è
            io, e la metà del segmento, che è mp. Si tracci la perpendicolare tra p e o, che è rs. Dunque, quanto minore è ms rispetto alla metà del segmento, che è mp, tanto maggiore è ir
            rispetto alla differenza, che è io. Perciò
            ls sarà uguale alla curva be. E così la sesta lm
            aggiunta alla metà del segmento è maggiore della curva be. Quindi laddove la sesta, aggiunta alla metà
            del segmento deve essere uguale alla curva be, la metà della differenza non sarà maggiore
            della metà del segmento (cfr. figura 2).

            [image: ]
Fig. 2
[image: link to parallel text] 6. Così, se dici che la differenza è minore del
            segmento, segue che la sesta sommata alla metà del segmento è
            minore della curva be. Dunque, se la sesta
            sommata alla metà del segmento deve essere uguale alla curva be, allora la differenza tra la sesta e la
            corda della quinta non deve essere né maggiore né minore del
            segmento. In questo caso, la prima [ipotesi] dimostra la seconda,
            ossia che la somma della quinta, aggiunta alla metà della
            differenza, e la sesta, aggiunta alla metà del segmento, è uguale
            al doppio della curva be, quando la
            differenza è uguale al segmento, e cioè, quando la quinta è uguale
            alla sesta, e questo è stato spiegato.

            [image: link to parallel text] 7. Ecco un eccellente procedimento dimostrativo,
            poiché sia che tu dica che la differenza è uguale al segmento
            nella seconda ipotesi, sia [che tu dica] che non è uguale, segue
            che la differenza è uguale al segmento nella prima ipotesi[8] e di conseguenza anche nella seconda. E questa è in un
            certo senso una coincidenza di opposti, poiché, affermando che la
            differenza non è uguale al segmento, segue che è uguale, e il
            falso si annulla da sé.

          
        Note a piè pagina
[1] Per rendere la lettura più scorrevole, il termine «portio»,
                reso ora con «parte», verrà tradotto con «segmento».

              [2] Questo opuscolo è destinato a Peurbach. Essa vuole dare una spiegazione del procedimento
                di rettificazione della curva presentato ne I complementi matematici (Cusanus 2010i, 62–63). Conosciamo il testo da n e
                dalla ristampa in b. Non sappiamo nulla
                del periodo in cui fu composto.

              [3] [image: 6^{a}                 ef+\frac{fg}{2}=\text{arco }be].

              [4] [image: 6^{a}                 ef+\frac{fg}{2}+[5^{a} bg+\frac{(ef–bf)}{2}]=2\text{arco                 }be]. Cfr. La figura 27 in Cusanus 2010i, 62–63, che concorda nelle linee essenziali con la figura 1
                in esame.

              [5] Scegliendo opportunamente il punto f, la somma [image: (ef+\frac{fg}{2})+[bg+\frac{(\text{corda                 }ef–\text{corda }bf)}{2}]] può essere uguale al
                doppio dell’arco be. Se f cade dopo b,
                allora [image: 6^{a}ef+\frac{fg}{2}+[5^{a}bg+\frac{(ef–bf)}{2}]>2\text{arco                 }be]; se f cade al centro
                dell’arco be, allora [image: 6^{a}ef+\frac{fg}{2}+[5^{a}bg+\frac{(ef–bf                 )}{2}]<2\text{arco }be]. Dunque, a seconda di dove
                cade il punto f, si ha una diversa
                uguaglianza. Bisogna trovare una posizione intermedia tale
                che: [image: (6^{a}ef+\frac{fg}{2})+[5^{a}                 bg+\frac{(ef–bf)}{2}]=2\text{arco }be] e per Cusano
                questo accade quando [image: 5^{a}=6^{a}] e dunque quando [image: fg=\text{corda }ef–\text{ corda                 }bf].

              [6] Dalle due relazioni: [image: {6^{a}ef+\frac{fg}{2}=\text{arco }be}]
                e [image: {(6^{a}ef+\frac{fg}{2})+[5^{a}bg+\frac{(ef–bf)}{2}]=2\text{arco                 }be}] risulta che [image: 6^{a}ef+\frac{fg}{2}=5^{a}bg+\frac{(ef–bf)}{2}],
                e, se [image: \frac{(ef–bf)}{2}>\frac{fg}{2}],
                allora [image: 5^{a}bg<6^{a}ef].

              [7] Ora Cusano vuole dimostrare che il segmento [image: fg=\text{corda }ef– \text{ corda                 }bf] e di conseguenza che [image: 6^{a}=5^{a}]. Del segmento in questione
                egli dà una descrizione solo generale del procedimento da lui
                intrapreso; nei trattati successivi lo esporrà nei
                particolari.

                [image: ]
Il punto finale è che [image: {(bg\times hi)+(ef-bf)\times ik=(ef\times                 lm)+(fg\times mn)}]. Questa è una identità che si può
                facilmente dimostrare. Cusano afferma inoltre che la somma dei
                segmenti è maggiore della curva be.
                Come mostra Hofmann e Hofmann 1980, nota 6, 237, questo non vale in tutti i casi, ma solo per quella
                posizione di f, per la quale l’angolo
                [image: cbf=\phi<21°40′24″].
                L’approssimazione affermata da Cusano risulta da quella
                posizione [image: f_0]
                di f, in cui [image: fg=\text{corda }ef– \text{ corda }bf].
                Questo vale per [image: \phi=9°37′18″=0,1679] e da ciò, in
                prima approssimazione, si ha che [image: 6^{a}ef+\frac{fg}{2}=1,569–2,0205(\phi–\phi_0)];
                [image: 5^{a}bg=1,1580+1,1921(\phi–\phi_0)];
                [image: 6^{a}ef=1,1580–1,6307(\phi–\phi_0)];
                [image: fg=0,8235–3,6025(\phi–\phi_0)]. Se
                consideriamo 1,5697 (invece di 1,5708) un soddisfacente valore
                approssimativo per [image: \frac{\pi}{2}], allora il ragionamento
                di Cusano (di rinforzare l’esattezza del risultato attraverso
                il procedimento dimostrativo indiretto mediante il maggiore e
                il minore), è vero, posto che ci si limiti a un’ampiezza
                piuttosto ridotta dell’angolo [image: \phi_0]. Tuttavia il testo è espresso
                in modo difficile e poco chiaro, e soprattutto è inesatta
                l’osservazione che rs cade
                perfettamente a metà tra o e p. Cusano confonde «tra» con «a metà
                di».

              [8] Nel procedimento sopra illustrato l’uguaglianza tra il
                segmento e la differenza delle corde con riferimento alla
                prima ipotesi può essere constatata così: «dove la sesta
                aggiunta alla metà del segmento deve essere uguale alla curva
                be, la metà della differenza non sarà
                maggiore della metà del segmento» e «se la sesta, aggiunta
                alla metà del segmento deve essere uguale alla curva be, allora la differenza tra la sesta e la
                corda sulla quinta non deve essere né maggiore né minore del
                segmento».

              
  La stessa unità di misura di ciò che è rettilineo e ciò che è
          curvilineo

          [image: link to parallel text] 1. Poiché mi sono reso conto che nelle scienze
          geometriche mancava una regola pratica per commisurare[1] ciò che è curvilineo e ciò che è rettilineo, e, per questo
          motivo, tali scienze risultano imperfette, e che molte altre cose
          che sembrano possibili non hanno potuto trovare compimento, allora
          ho fatto non poca fatica per riuscire a comprendere quest’arte. Se
          ho raggiunto il mio scopo, lo giudicherai, tu, lettore[2].

          [image: link to parallel text] 2. Dico, inoltre, che ciò che è curvilineo e ciò
          che è rettilineo hanno la stessa misura se sono misurati con la
          stessa unità di misura, se, per esempio una linea retta ha tanti
          piedi dritti quanto un arco [ne ha] curvi.

          
            Prima proposizione

            [image: link to parallel text] 3. Dato un arco, trovare una retta della stessa
            misura (cfr. figura 1).

            Sia bc l’arco dato il cui centro è a; si tracci la corda bc
            e su di essa si fissi il punto d,
            equidistante da a e da b: questo è il punto di tale regola. Da questo
            punto, fai passare attraverso b una retta
            fino ad e in modo tale che, se tracci da
            a attraverso de una
            corda ag uguale alla metà di de, questa corda passa attraverso un punto f della linea de. Sia
            ora df la quarta parte di de. La linea retta de ha
            appunto la stessa misura dell’arco bc.

            [image: link to parallel text] 4. Per dimostrare ciò, faccio due ipotesi[3]. In primo luogo che de può essere
            tracciato in modo che tra il punto f,
            attraverso cui passa la corda, com’è stato detto, e l’estremità
            e della linea de, il
            segmento [fe] sia uguale a tre quarti della
            retta commensurabile. E questo è evidente da sé. Infatti è certo
            che può essere tracciato in modo che fe sia
            maggiore, come nella seconda figura, e in modo che sia minore,
            come nella terza figura; e ancora, in modo che essa non sia né
            maggiore né minore[4]. In secondo luogo, suppongo che quanto più de è minore [dell’arco], tanto più fe è minore in rapporto a de, e df maggiore, e
            accade il contrario quando de è maggiore
            [dell’arco]. Anche questo è evidente alla vista nella seconda e
            terza figura[5].

            [image: ]
Fig. 1
[image: link to parallel text] 5. Dico, dunque, che la prima ipotesi è
            verificata, o quando de è la retta cercata,
            cioè della stessa misura dell’arco, oppure quando essa è minore o
            maggiore. Se si verifica il primo caso, ottengo ciò che cercavo;
            dunque df sarà necessariamente la quarta
            parte di de. Se dici che questo si verifica
            quando de è minore della retta avente la
            stessa misura [dell’arco], ciò è impossibile. Infatti, poiché
            dalla seconda ipotesi fe è minore in
            rapporto a de e df è
            maggiore di un quarto della retta avente la stessa misura
            [dell’arco], e secondo te, [fe] sarà uguale
            ai tre quarti della retta commensurabile, de non sarà minore della retta avente la stessa
            misura [dell’arco], bensì maggiore. Analogamente, se dici che si
            verifica quando de è maggiore della retta
            avente la stessa misura [dell’arco], ciò implica la stessa
            contraddizione.

          
          
            Seconda proposizione

            [image: link to parallel text] 6. Dato un cerchio, trovare un arco della stessa
            misura di una retta data (cfr. figura 2).

            [image: ]
Fig. 2
Sia data la retta de; sia dato un
            cerchio il cui centro è t e il diametro stv; e sia a il centro
            di tutti gli archi. Da a traccia la corda
            ag, uguale alla metà di de, e su de segna la sua
            quarta parte con df, e avvicina de parallelamente a tv,
            in modo che f cada sulla corda ag e indica con b il
            punto d’intersezione con la circonferenza del cerchio. Allora, se
            d è equidistante da b e da a, ba sarà la metà dell’arco cercato. Prolunga
            quindi bd fino a toccare la circonferenza
            in c e otterrai l’arco bc della stessa misura della retta de. Il tutto è evidente da quanto detto
            sopra.

            [image: link to parallel text] 7. Per vedere che d è il
            punto di questa regola, il quale, se la corda ag ha la stessa misura dell’arco ba, dista la metà di ag
            dal punto di intersezione f, dove ag interseca bcd[6], considera che quanto maggiore è la corda bc, tanto più [il punto] d si allontana da b e da
            a e si avvicina al centro del cerchio;
            quanto minore [è la corda bc], avviene il
            contrario, e ciò è evidente (cfr. figura 3).

            [image: ]
Fig. 3
Dunque, sulla massima corda, d si
            allontana minimamente dal centro del cerchio e massimamente da b e da a. Sulla corda
            minima, d si allontana massimamente dal
            centro e minimamente da b e da a. Perciò, d si trova,
            sulla corda massima, al centro del cerchio e, su quella minima,
            sulla sua circonferenza[7]. Ma è certo che, sia sulla massima corda sia su quella
            minima, d è equidistante da b e da a e lo stesso è
            su tutte le corde intermedie. Da ciò, si deduce che se bc è la corda dell’arco pari alla terza parte
            della circonferenza del cerchio, allora il punto d sarà equidistante dal centro e da b ed a.

            [image: link to parallel text] 8. Inoltre, si può tracciare da a attraverso bc la corda
            ah che taglia [bc]
            nel punto i (cfr. figura 4). Dico che aih può essere tracciata così che ai sarà la distanza del punto d da a su questa corda
            ah. Questo è certo. Così sarà anche quando
            ah è uguale a bc e
            il punto di intersezione i sarà
            equidistante da b e da a, come d lo sarà da
            entrambe. E se ah è minore, questo non è
            possibile, perché allora ai sarebbe
            maggiore di prima, quando essa era uguale. E se ah è maggiore, è altrettanto impossibile,
            perché ai sarebbe minore di prima, quando
            essa era uguale.

            [image: ]
Fig. 4

          
            Terza proposizione

            [image: link to parallel text] 9. Determinare una retta avente la stessa misura
            dell’arco di una semicirconferenza e una figura rettilinea avente
            la stessa misura[8] della superficie curva corrispondente.

            [image: ]
Fig. 5
Sia dato un cerchio e sia bc l’arco
            della semicirconferenza, con centro a, e
            d il punto della regola equidistante da a e b, che in questo
            caso si trova al centro del cerchio (cfr. figura 5). Traccia la
            linea ad, prolunga, quindi, db fino a de in modo
            che, se ottieni come metà di de la corda
            ag, tracciata da a
            attraverso de, essa passa su de per il punto f che
            dista da d la quarta parte di de, come sopradetto. Poi chiudi il triangolo
            rettangolo per mezzo del lato ae. Dico che
            l’area del triangolo rettangolo ADE ha la stessa misura dell’area
            del semicerchio e che de ha la stessa
            misura dell’arco bc. Il secondo punto è
            evidente da quanto sopradetto. Il primo punto è evidente allo
            stesso modo, come prima, attraverso due ipotesi[9], di cui la prima è: si può determinare de e chiudere il triangolo rettangolo
            attraverso ea in modo che se si traccia la
            corda afg che è la metà di de da a per de, l’area [del triangolo] AFE sarà uguale a
            tre quarti dell’area del semicerchio. È evidente, poiché si
            ottiene là dove essa è maggiore e là dove è minore, e quindi anche
            dove non è né maggiore né minore. In secondo luogo, suppongo che
            quanto minore sarà de, tanto minore sarà
            quest’area AFE in rapporto all’area intera del triangolo
            rettangolo ADE, e quanto maggiore esso sarà, tanto maggiore sarà
            l’area. La prima ipotesi è quindi verificata quando l’area del
            triangolo rettangolo ADE ha la stessa misura dell’area del
            semicerchio, e si ottiene ciò che si cercava; invece, se essa è
            minore o maggiore, entrambi i casi implicano contraddizione
            esattamente come detto sopra.

            [image: link to parallel text] 10. È pertanto chiaro che, se il triangolo
            rettangolo, di cui un lato è il semidiametro e l’altro è
            perpendicolare a questo, ha la stessa misura dell’intera
            circonferenza del cerchio, l’area di quel triangolo rettangolo ha
            la stessa misura dell’area del cerchio. E, poiché qualsiasi
            poligono può essere trasformato in un altro, potrai assegnare
            all’area del cerchio l’area di ugual misura di un triangolo, di un
            quadrato, di un pentagono, di qualsiasi altro poligono e di
            qualsiasi parte di cerchio anche se non ha la stessa misura del
            cerchio. Potrai anche stabilire angoli in rapporto a rette date e
            a tutte le figure in modo che abbiamo la stessa misura l’una
            nell’altra. Dico che si possono realizzare notevoli
            trasformazioni, conservando la superficie di ciascuna figura e la
            sua natura propria e invariabile, e, attraverso quest’arte,
            scoprirai altre cose nascoste che difficilmente si possono
            spiegare, anche nelle sezioni e nelle curve che mutano
            uniformemente[10]. Potrai anche disporre di angoli e strumenti con i quali
            molto facilmente e velocemente potrai fare le costruzioni
            suddette, che lasciamo alla tua operosità[11].

            [image: ]
Fig. 6
[image: link to parallel text] 11. L’area AGBF ha la stessa misura della metà
            del[l’area del] cerchio e l’area ABE ha la stessa misura dell’area
            del cerchio; il medio proporzionale tra il semidiametro ad e la retta ed avente
            la stessa misura della metà della circonferenza del cerchio, come
            insegna Euclide, VI, 9[12], è il lato del quadrato la cui area ha la stessa misura
            di quella del cerchio (cfr. figura 6). La retta df misura un ottavo della circonferenza del
            cerchio, e così l’area del triangolo rettangolo ADF misura un
            ottavo dell’area del cerchio[13]. Dunque, quando hai una retta della stessa misura di un
            arco, hai anche l’area di una figura rettilinea della stessa
            misura dell’area di una porzione di cerchio.

            Fine.

          
        Note a piè pagina
[1] La parola «commensurare», come in seguito «commensurabilis» è
              equivoca: essa significa «avere uguale misura», ma Cusano la
              utilizza per indicare una uguaglianza sia tra lunghezze sia tra
              superfici. Qui si tratta di una uguaglianza di misura. Cfr.
              Nicolle 1998, nota 2, 97.

            [2] Il testo è dello stesso periodo de I
              complementi matematici, ma non se ne può dare la data
              esatta. Tuttavia, poiché si fa riferimento al contenuto de I complementi matematici nelle tre tesi,
              possiamo ipotizzare che esso sia stato composto verosimilmente
              subito dopo il testo più lungo. Cfr. Hofmann e Hofmann 1980, nota 8, 239.

            [3] Hofmann e Hofmann 1980, (nota 2, 237–238) mostra, attraverso precisi calcoli, come
                l’approssimazione proposta da Cusano nel calcolo del rapporto
                tra corda e arco, per un angolo minimo, resti meramente
                teorica, perché, stando alle premesse, risulterebbe
                un’equazione di 4 °grado (per [image: \sin\omega]), che può accadere solo in
                rari casi particolari.

              [4] La prima tesi sostiene che esiste un punto f su de tale che
                [image: ef=\frac{3}{4}                 de] e quindi [image: df=\frac{1}{4} de].

              [5] La seconda tesi sostiene che il punto
                e si trova su de. Se [image: de>\text{arco }bac],
                allora [image: ef>\frac{3}{4}                 de] e [image: df<\frac{1}{4} de], ma se [image: de<\text{arco }bac],
                allora [image: ef<\frac{3}{4}                 de] e [image: df>\frac{1}{4} de].

              [6] [image: de=\text{arco                 }bc]; [image: \text{arco                 }ba=\text{arco}\frac{bc}{2}]; [image: ag=\frac{de}{2}]; quindi [image: ag=\text{arco }ba].

              [7] Cusano non identifica la curva tracciata per tutte le
                posizioni di de.

              [8] In questo caso il termine «commensurabilis» sta a
                significare una equivalenza, ossia un’uguaglianza tra
                aree.

              [9] Il secondo punto concerne il rapporto di una retta a una
                curva ed è dimostrata nella tesi precedente. Il primo punto
                concerne il rapporto di una superficie rettilinea ad una
                superficie curva ed è l’oggetto di questa terza
                proposizione.

              [10] È qui il presupposto sbagliato di Cusano: egli pensa che,
                grazie a rapporti proporzionali, si possano stabilire
                variazioni uniformi e che le variazioni si possano
                rappresentare sempre attraverso linee rette. Cusano tocca qui
                tutti i punti espressi ne I complementi
                matematici, in particolare le costruzioni mediante angoli
                fissi, la trattazione delle sezioni coniche e delle curvature
                (cfr. Cusanus 2010i, 55, 70). Facendo seguito alla dottrina di Oresme 1968 sulle latitudines formarum,
                con «curvitas uniformiter difformis»
                bisogna intendere una curva avente una variazione di curvatura
                costante. Sul tema, cfr. Hofmann e Hofmann 1980, nota 6, 234.

              [11] Cfr. Cusanus 2010b, 32, 33 e 39.

              [12] Cfr. Da Novara 2005, VI, 13.

              [13] Se [image: df=\frac{de}{4}]; [image: de=\text{arco                 }bc=\text{semicirconferenza del cerchio}]; allora
                [image: df=\frac{1}{8}]
                della circonferenza.

              
  Dialogo sulla quadratura del cerchio. Dialogo
              tra il cardinale di San Pietro, vescovo di Bressanone, e Paolo,
              fisico fiorentino, sulla quadratura del cerchio

              
          [image: link to parallel text] 

          1. PAOLO: Sommo Padre, tu sai che, fin dalla mia infanzia, ho
          cercato la verità che sembra risplendere in maniera più chiara nelle
          matematiche[1] e sai anche quanto io desideri trovare la quadratura del
          cerchio, che non è stata ancora trovata. Perciò ti prego, fammi
          sapere se, dopo avermi inviato i libri – per me alquanto oscuri e
          discutibili – sui Complementi matematici, ti
          è venuto in mente un altro procedimento più attendibile[2].

          IL CARDINALE NICOLA: Certo, [penso di averne uno] facile e, come
          credo, indiscutibile.

          PAOLO: Dimmi, ti prego.

          [image: link to parallel text] 2. NICOLA: So che è ti è ben noto tutto ciò che
          riguarda la questione, eccetto soltanto quest’unica cosa, ossia
          come, dato il cerchio di una circonferenza, tu possa determinare una
          linea retta della stessa lunghezza.

          PAOLO: Sì, è così; infatti, so da Archimede che se moltiplico il semidiametro di un cerchio per una
          linea uguale alla sua semicirconferenza si ottiene un
          rettangolo[3] uguale[4] al cerchio.

          [image: link to parallel text] 3. NICOLA: Per darti quindi un’idea di ciò che
          resta, considera questa proposizione: se si aggiunge la corda del
          quadrante di un cerchio dato al suo semidiametro, si ottiene il
          diametro del cerchio circoscritto al triangolo isoperimetrico alla
          circonferenza del cerchio dato.

          [image: ]
Fig. 1
Sia, per esempio, BCDE il cerchio dato, descritto intorno ad a, e sia bc il quadrante
          (cfr. figura 1); si traccino la corda bc e
          le linee ab e ac[5] e si descriva un altro cerchio intorno allo stesso centro
          a il cui diametro fg
          sia uguale alla somma di ab e bc, e precisamente gh sia
          uguale a ba e hf
          uguale a bc. Sia inscritto il triangolo IKL.
          Dico che [il perimetro di] questo triangolo rettilineo[6] è uguale alla circonferenza BCDE[7].

          PAOLO: Questo procedimento è facile e assai prezioso, se
          dimostrerai che è vero.

          [image: link to parallel text] 4. NICOLA: Ci proverò. Riprendendo la figura sopra
          descritta del cerchio dato, prolungherò la linea ac all’infinito, e sia essa ma; dico, senza dubbio, che è possibile tracciare
          una qualsiasi linea da b ad am tale che, se a questa si aggiunge un’altra che
          sta ad essa come il lato del quadrato alla diagonale[8], si ottiene una linea uguale al diametro del cerchio
          circoscritto al triangolo isoperimetrico al cerchio dato
          (cfr. figura 2).

          PAOLO: Lo ammetto. Infatti, è possibile tracciare una linea da
          b ad am in modo tale
          che, se a questa si aggiunge un’altra che sta ad essa come il lato
          [del quadrato] alla diagonale, risulti una linea minore del diametro
          del cerchio circoscritto al triangolo isoperimetrico al cerchio
          dato. È quel che accade nel caso in cui si traccia [la linea] verso
          un punto n, vicino ad a; allo stesso modo è possibile tracciare
          un’altra linea verso un punto o, vicino al
          punto m, che, aggiunta al lato [del
          quadrato], sia maggiore [del diametro]. Quindi, tra n e o ci sarà un punto
          tale che la linea tracciata da b a questo
          punto, aggiunta al lato [del quadrato], sarà uguale, cioè, né
          maggiore né minore, al diametro del cerchio circoscritto al
          triangolo isoperimetrico al cerchio dato[9].

          [image: ]
Fig. 2
[image: link to parallel text] 5. NICOLA: Dico pertanto a ragione che se prendi
          bn e [aggiungi a questa] tutti i lati[10] che vuoi, la linea che ne deriva sarà minore del
          semidiametro[11] del cerchio circoscritto al triangolo e [precisamente sarà
          minore] di tanto quanto sono i lati che avrai aggiunto, tranne uno.
          E se prendi bo e [aggiungi a questa] tutti i
          lati che vuoi, la linea che ne deriva sarà maggiore del semidiametro
          del cerchio circoscritto al triangolo e di tanto quanto sono i lati
          che avrai aggiunto, tranne uno. Così, ci sarà un punto tra n e o, tale che la linea
          condotta da b a questo punto sarà uguale al
          semidiametro del cerchio circoscritto al triangolo e di tanto quanto
          sono i lati che avrai aggiunto, tranne uno. Questo non può che
          trovarsi nel punto c in cui il lato è uguale
          al semidiametro del cerchio dato, cioè, uguale a ba; altrimenti, se il lato fosse maggiore o
          minore di ba, questo non sarebbe
          possibile[12].

          [image: link to parallel text] 6. PAOLO: Concordo con te sul primo punto, cioè che
          bn, aggiunto a tutti i lati che vuoi, resta
          minore del diametro del cerchio circoscritto al triangolo
          isoperimetrico di tanto quanto sono i lati, tranne uno. Intendo
          “tranne uno” perché aggiungi un solo lato alla linea bn per ottenere il diametro del cerchio
          circoscritto; infatti, poiché bn più il lato
          è minore di questo diametro e il lato è minore di ab, tutto questo è evidente[13]. In modo contrario si comporta la linea bo e anche questo è evidente. Quindi, è certo
          che, se si deve giungere all’uguaglianza in qualche punto
          intermedio, questo punto è c, per la ragione
          che ho detto. Se infatti il lato fosse minore o maggiore della linea
          ab, ciò non seguirebbe in alcun modo. Ma cosa
          accadrebbe se qualcuno negasse che si dà tale punto tra n e o[14]?

          NICOLA: Chi nega che tra il minore e il maggiore cada nel mezzo
          l’uguale, nega che si possa dare un triangolo isoperimetrico al
          cerchio. Io, tuttavia, presuppongo la quadratura del cerchio come
          possibile e di conseguenza tutto ciò senza cui essa non è
          possibile[15].

          [image: link to parallel text] 7. PAOLO: Potrei dire che ciò nonostante è
          possibile, ma che non lo è per tutti i lati aggiunti alla linea così
          che risulti quel diametro del cerchio circoscritto al triangolo e di
          tanto quanto sono i lati, tranne uno, poiché potrei dire che tra n e c cade un punto p, e che la linea bp più
          il suo lato è uguale al diametro del suddetto cerchio
          circoscritto.

          [image: link to parallel text] 8. NICOLA: Allora non neghi che se si sommasse bp a due lati, questa somma sarebbe uguale al
          diametro in questione, ma a quello che è minore del semidiametro del
          cerchio dato, poiché il lato è minore di ab[16].

          PAOLO: Come potrei negarlo?

          NICOLA: Prendi un punto sopra p e sia
          questo q; dove bq più
          il lato è tanto maggiore del diametro in questione quanto il lato è
          minore della linea ab, allora ciò è
          possibile. Non è forse vero che questo bq
          sommato ai due lati fa il diametro e, con esso, il semidiametro del
          cerchio dato?

          PAOLO: Chi potrebbe dubitarne?

          NICOLA: E che avverrebbe se cercassi una linea, che, sommata al
          lato, superi il detto diametro, di tanto quanto i due lati sono
          minori dei due semidiametri del cerchio dato?

          PAOLO: Occorre che il punto si trovi ancora più vicino al punto
          c.

          NICOLA: E che accadrebbe se volessi che la linea, oltre ai
          diversi lati aggiunti, fosse uguale a più semidiametri?

          PAOLO: Sarebbe necessario prolungare il punto fino a raggiungere
          c.

          NICOLA: Giusto! Se dunque procedessi così all’infinito, alla fine
          arriveresti necessariamente[17] al punto c, mentre al di qua del
          punto c il lato sarebbe sempre minore di ab.

          PAOLO: Hai perfettamente ragione.

          [image: link to parallel text] 9. NICOLA: E’ evidente che ciò non è possibile,
          ossia che tra n e o
          cada un punto tale che la linea ad esso condotta si rapporta così
          che, se a questa si aggiunge un numero qualsiasi di lati, essa sarà
          uguale al diametro del cerchio circoscritto al triangolo
          isoperimetrico e di tanti quanti sono i lati aggiunti, tranne uno;
          ma questo sarà il punto c. E se dicessi che
          il punto si trova oltre c dal lato di o, seguirebbe la stessa contraddizione mediante
          la dimostrazione inversa, poiché si tornerebbe necessariamente al
          punto c.

          [image: link to parallel text] 10. PAOLO: Non posso negare che sia come hai
          chiaramente dimostrato; sembra evidente che chi afferma che il punto
          si trovi al di qua o al di là di c, sarebbe
          in errore e l’errore proviene da quella stessa posizione, poiché
          ogni linea maggiore di bc, sommata al suo
          lato, è maggiore del diametro del cerchio circoscritto al triangolo
          isoperimetrico e ogni linea minore, sommata al suo lato, è minore
          del diametro[18].

          NICOLA: Questo potrebbe essere dimostrato anche con un altro
          procedimento, e ci sono vari modi per trovare facilmente dal sapere
          scientifico i diametri dei cerchi inscritti e circoscritti ai
          poligoni isoperimetrici ai cerchi dati, poiché il poligono più
          esteso avente infiniti lati coincide con il cerchio; ma questo
          procedimento è sufficiente, il resto lo lascio a te.

          [image: link to parallel text] 11. PAOLO: E’ sufficiente conoscere il modo di
          trasformare una circonferenza in una retta e viceversa una retta in
          una curva; a partire da ciò, tutto quello che finora era sconosciuto
          nelle matematiche può essere scoperto, come tu hai tentato nei tuoi
          Complementi matematici[19]. Pertanto, se qualcuno vorrà ridurre la curva in retta,
          moltiplicherà il semidiametro del cerchio dato per la semiretta
          uguale alla circonferenza. Sia, per esempio, rs uguale ad ab e st uguale della somma dei tre lati ikl; se si chiude il rettangolo RSTV uguale alla
          superficie del cerchio BCDE, si trova il medio proporzionale tra rs e st secondo
          Euclide VI, 9; sia xy il medio
          proporzionale, cioè il lato del quadrato; il quadrato XYZ& sarà
          uguale al cerchio (cfr. figura 3). Queste cose si
          sanno e per questo ti ringrazio, Nicola, sommo padre, perché,
          nonostante tutti i tuoi impegni, hai ritenuto degno applicare il tuo
          acume a tale questione a cui tutti gli studiosi di matematica
          vorrebbero venire a capo, ma non vi riescono, e rendere nota, dopo
          tanto lavoro e diversi procedimenti, la tua scoperta così semplice e
          chiara, dispensando gli studiosi di una così grande fatica.

          [image: ]
Fig. 3
Fine. Bressanone. 1457

          
            ‹Appendice›

            [image: link to parallel text] 12. Il punto è questo: il processo
            all’infinito[20]. Infatti, se esiste quel punto, la somma della linea
            tracciata da b ad esso e il lato è tale
            che, se aggiungessi lati all’infinito, non faresti altro che
            aggiungere infiniti ba al diametro del
            cerchio circoscritto al triangolo isoperimetrico. È chiaro allora
            che la somma della linea e il lato è uguale al diametro del
            cerchio circoscritto e che il lato è uguale a ba, e il punto sarà c.

            [image: link to parallel text] 13. Se davvero si nega il processo [all’infinito]
            allora è chiaro che qualsiasi punto si segni al di qua di c, anche se si pone che la somma di ba e il lato supera il diametro del cerchio
            circoscritto, allora un certo numero di lati più la somma della
            linea e il lato farà sempre il diametro del cerchio circoscritto e
            tutte le linee ba, e puoi sempre aumentare
            quel numero, se il punto supera di molto c,
            e mai cessa quest’accrescimento, perché non c’è un punto al di qua
            di c, dove la somma della linea con il lato
            supera numericamente il diametro del cerchio circoscritto, per
            quanto infiniti siano i lati superati dalle linee infinite,
            essendo qualsiasi lato di una qualche lunghezza minore della linea
            ba. Quella lunghezza moltiplicata
            all’infinito sarà sempre maggiore della lunghezza di cui la somma
            della linea con il lato eccede il diametro del cerchio
            circoscritto eccedente.

            [image: link to parallel text] 14. Dico inoltre: non c’è dubbio che la somma di
            ba e il lato superi il diametro del cerchio
            circoscritto al poligono della massima estensione, avente cioè
            infiniti angoli, che si trasforma nel diametro del cerchio
            isoperimetrico. Così, se aggiungi tutti i lati che vuoi, essi
            superano sempre tutte linee ba e
            precisamente della lunghezza con la quale bc supera ba, come si
            sa. Poiché, se prendi un altro poligono al di qua di quello più
            esteso, allora quell’eccesso è minore, e così all’infinito e,
            poiché tra il più esteso e il meno esteso cadono infiniti
            poligoni, nel triangolo quell’eccesso sarà minore, se sarà così
            piccolo che non possa essercene uno minore. Se infatti potesse
            esserci uno minore, non sarebbe il poligono più piccolo. Invece la
            lunghezza, di cui non si può dare una minore, non è una lunghezza,
            ma un punto[21]. Così la linea bc non è maggiore
            in lunghezza di quella che si cerca.

            [image: link to parallel text] 15. Al contrario: sia bn
            la linea, che, sommata al suo lato, sia uguale al diametro del
            circoscritto al poligono più esteso. È evidente che bn supera ba, il
            semidiametro del cerchio isoperimetrico, più di quanto il diametro
            del circoscritto superi il diametro del cerchio, ossia di tanto
            quanto bn supera ba,
            come si sa; e meno negli altri poligoni man mano che l’estensione
            diminuisce. Dunque nel poligono con la minima estensione questa
            linea non deve superare il suo lato ba più
            dell’eccesso di quanto il diametro del circoscritto supera il
            diametro del cerchio isoperimetrico. Se dunque nel poligono più
            esteso quest’eccesso è massimo, cioè non c’è uno maggiore, e in
            quelli meno estesi esso diminuisce progressivamente, nel poligono
            meno esteso esso sarà il minimo, di cui non c’è uno minore. Di
            conseguenza il suo lato sarà uguale a ba.
            Se infatti fosse minore di ba, è chiaro che
            supererebbe ba più di quanto deve eccedere
            nel poligono meno esteso; se fosse maggiore di ba, allora eccederebbe di meno; sarà dunque bc, il cui lato è ba.

          
        Note a piè pagina
[1] Cfr. Cusanus 1972a, I, 2, 31ss.; Cusanus 1988b, 31, 52, 3–10.

            [2] Questo testo non sembra trattarsi di una finzione narrativa,
              ma piuttosto del resoconto di una discussione reale avvenuta tra
              Cusano e Toscanelli, che potremmo datare nella prima metà del 1457, e
              collocare prima del De caesaera circuli
              quadratura del 6.8.1457, in cui è presentata un’idea nuova
              per attuare la quadratura del cerchio. Da quanto si afferma in
              questo passo si può dedurre che Toscanelli aveva contestato anche la versione ampliata de i Complementi matematici in cui Cusano
              ammette i difetti di quel procedimento, tanto più che spera di
              dare da quel momento in poi una nuova e migliore
              approssimazione.

            [3] Come negli altri scritti matematici, anche in questo testo
              Cusano utilizza il termine «quadrangulus» per indicare il
              rettangolo. Cfr. Archimedes 1910b, prop. 1: «Ogni cerchio è equivalente a un triangolo rettangolo
              nel quale uno dei lati perpendicolari è uguale al raggio del
              cerchio e la base (cioè, l’altro lato perpendicolare) è uguale
              alla circonferenza del cerchio».

            [4] Qui l’uguaglianza sta a indicare l’equivalenza.

            [5] Si tratta, come si nota dal disegno, dei raggi del cerchio
              BCE.

            [6] Il termine «rectilineus» sta per «delimitato da lati
              dritti».

            [7] Cusano approssima il diametro [image: 2r_3] del cerchio circoscritto al cerchio
              avente la stessa circonferenza del triangolo equilatero
              mediante: [image: 2r_3=r(\sqrt{2}+1)]. Dunque il cerchio
              isoperimetrico sarebbe uguale a [image: 6r_3(\frac{\sqrt{3}}{2})=[\frac{(3\sqrt{3})}{2}](1+\sqrt{2})r]
              e così [image: \frac{\text{circonferenza}}{\text{diametro}}=3,135               \text{ anziché } 3,142]. L’approssimazione è quindi
              insufficiente.

            [8] Come negli altri scritti matematici, Cusano utilizza il
              termine «diameter» per indicare la diagonale. Cfr. Cusanus 2010i, 9, 3 e Cusanus 2010d, 26.

            [9] Si ha, dunque, un segmento [image: x>r], cosicché [image: x+\frac{x}{\sqrt{2}}=2r_3].

            [10] Bisogna intendere «cum» nel significato di «più», ossia nel
              senso di un’addizione.

            [11] Come nota Nicolle 1998, nota 5, 103, si tratta di semidiametro e non di diametro.

            [12] Ora si afferma che [image: \frac{r}{\sqrt{2}}+kr=2r_3+(k–1)r].
              [image: (k\geq2)].

            [13] Il punto di partenza è la diseguaglianza [image: bn+\frac{bn}{\sqrt{2}}<2r_3], nel caso
              che [image: \frac{bn}{\sqrt{2}}<ab]. Da ciò si
              conclude che [image: bn+k\frac{bn}{\sqrt{2}}<2r_3+(k–1)r].

            [14] Se all’inizio aveva accettato l’ipotesi di Cusano, ora
              Toscanelli incalza Cusano insistendo sul problema dell’esistenza
              di un punto esatto che permetta di realizzare la quadratura del
              cerchio. La sua obiezione costituisce il nocciolo della
              questione: se deve essere [image: x(1+\frac{1}{\sqrt{2}})=2r_3], allora
              [image: x\neq r\sqrt{2}],
              ma [image: x=1,417], non
              [image: <r\sqrt{2}],
              come Toscanelli pensava, presupponendo p tra
              n e c, bensì più
              grande. Questo era accessibile anche ai matematici del tempo con
              l’utilizzo dei limiti di Archimede per [image: \pi].

            [15] Cfr. Cusanus 2010c, 3–11.

            [16] Ora ha inizio la parte più interessante del dialogo. Cusano
              vuole mostrare che l’uguaglianza [image: x+\frac{x}{\sqrt{2}}=2r_3[=2,418r]] non
              può avere altra soluzione che [image: x=r\sqrt{2}], e a questo fine si serve di
              una dimostrazione indiretta: se fosse [image: x_0+\frac{x_0}{\sqrt{2}}=2r_3] e [image: x_0\neq r\sqrt{2}], allora
              si potrebbe appurare che le soluzioni [image: x_1], [image: x_2],…. [image: x_k]…. dell’equazioni [image: x_1+\frac{2x_1}{\sqrt{2}}=2r_3+r];
              [image: x_2+\frac{3x^2}{\sqrt{2}}=2r_3+2r], ….
              [image: x_k+\frac{(k+1)}{\sqrt{2}}=2r_3+kr],….
              andrebbero in modo monotono da [image: x_0] verso [image: r\sqrt{2}], e che [image: \text{lim}x_k=r\sqrt{2}] (con [image: k\to\infty]). Poiché
              Cusano vuole che tutti le [image: x_k] siano uguali, egli deve rendere
              ognuno di loro uguale a [image: r\sqrt{2}]. In realtà [image: x_0>r\sqrt{2}], per cui
              il tutto non è che un tentativo ingegnoso, ma privo di
              significato nel caso in questione.

            [17] Nel termine «necessario» è racchiusa tutta la questione. Come
              è possibile che una procedura portata all’infinito possa
              condurre alla fine a un punto?

            [18] Come scrive Hofmann e Hofmann (1980, nota 12, 241–242), in Bb si dà un lunga
              spiegazione di questo passo il cui contenuto è: se si accetta il
              processus in infinitum, allora il
              discorso fila. Se invece lo si ritiene inammissibile, allora ci
              si avvicina sì al punto c attraverso un
              aumento costantemente del valore k del
              raggio da aggiungere all’infinito, senza tuttavia mai
              raggiungerlo. Del resto [image: r\sqrt{2}+r] è maggiore del raggio del
              cerchio circoscritto 2r, quello avente la
              massima superficie tra i poligoni regolari isoperimetrici e
              maggiore del raggio del cerchio circoscritto [image: 2r_n], di uno degli altri
              poligoni isoperimetrici [image: (n>3)]. La differenza tra le due
              espressioni diminuisce col diminuire di n
              e raggiunge il suo minimo 0 quando il poligono contiene la più
              piccola superficie possibile [image: (n=3)]. Ora si determini [image: x_n] da [image: x_n+\frac{x_n}{\sqrt{2}}=2r_n]. Così
              [image: (\frac{x_n}{\sqrt{2}}–r)–(2r_n–2r)=r–x_n]
              ha il suo massimo valore per [image: n=\infty], ossia il poligono isoperimetro
              avente la massima superficie; diminuendo n diminuisce continuamente la differenza e
              raggiunge il suo minimo (0) per [image: n=3], ossia il poligono isoperimetrico
              avente la superficie minima. Dunque [image: x_3=r\sqrt{2}].

            [19] Cfr. Cusanus 2010i, 31–35.

            [20] [Il contenuto dell’appendice è scritto a margine in Ob, mentre si trova all’interno del testo
                in To ed è assente in n e b].

              [21] Cusano si rifà qui alla definizione euclidea del punto
                «Σημεῖόν ἐστιν, οὗ μέρος
                οὐθέν» (Euclide 2007, I, 1), ripresa da Da Novara 2005 («punctus est, cuius pars non est»).

              
  La quadratura del cerchio cesariano. Al mio
              benevolissimo sovrano Federico, Cesare Imperatore, Niccolò,
              cardinale di San Pietro, vescovo di Bressanone

              
          
          [image: link to parallel text] 2. Un’inattesa persecuzione mi ha recentemente
          trattenuto nella fortezza di Andratz che in tedesco prende il nome
          di Buchenstein[1]. Lassù, in mezzo alle Alpi, privato dei miei libri e
          approfittando di questo ristoro, ho iniziato a indagare se fosse
          possibile ottenere, in modo chiaro e facile, la sempre cercata, e,
          come si dice, non ancora trovata, quadratura del cerchio[2]. Dopo i tanti e vari procedimenti, che ho riportato nei
          miei libri scritti su questo argomento, me ne è venuto in mente uno
          più chiaro e a me più caro, che offro qui di seguito alla Tua maestà
          come degno regalo per la Tua Altezza. Infatti, per il fatto che si
          sa che ciò che finora si è cercato come qualcosa di estremamente
          singolare può essere trovato solo con profondissimo acume e una
          passione fortissima, chi sarebbe più degno di riceverlo se non il
          sommo imperatore che si diletta come il più nobile dei principi
          anche in questi segreti ragionamenti?

          [image: link to parallel text] 3. Benché questo piccolo regalo sia minuscolo di
          fronte alla tua innata clemenza, so che lo apprezzerai molto e verso
          di me, tuo umile servitore, sarai senz’altro più benevolo. Prendendo
          esempio dalla riduzione delle figure l’una nell’altra, capirai come
          all’imperatore spetti il potere di trasformare ciò che è rotondo in
          ciò che è poligonale e viceversa, e di tradurre talvolta la severità
          della legge in clemenza e talvolta la clemenza in rigore. Questo
          spetta solo a Te, che sei indipendente dalle leggi, essendo tu la
          fonte unica delle leggi civili alle quali tutti gli altri devono
          sottomettersi per legge[3].

          
            Proposizione

            [image: ]
Fig. 1
[image: link to parallel text] 4. Se dal centro a di un
            cerchio dato tracci [due] linee verso due punti della
            circonferenza, g e f, distanti l’una dall’altra un dodicesimo
            della circonferenza e se da un punto d
            della linea ag conduci all’infinito la
            perpendicolare che taglia af in modo che la
            linea compresa tra il punto d’intersezione c e la circonferenza sia la metà di ad e se indichi con x il
            punto sulla perpendicolare tale che la linea tracciata dal centro
            a verso questo stesso punto sia il doppio
            della linea ad, allora dx sarà un sesto della circonferenza del
            cerchio dato (cfr. figura 1).

            Questo perchè ad sarà il semidiametro
            del cerchio inscritto nel triangolo isoperimetrico al cerchio
            dato, ax il semidiametro del cerchio
            circoscritto al triangolo in questione e dx
            la metà del lato del suddetto triangolo[4].

          
          
            Dimostrazione

            [image: link to parallel text] 5. Si dimostra così: poiché è certo che ga è maggiore dei [image: \frac{2}{3}] del semilato del triangolo e
            minore del semilato[5], mantenendo la stessa figura, si segnino, usando
            l’immaginazione, su ga e su fa rispettivamente le linee go e fp uguali ai
            [image: \frac{2}{3}] [del
            semilato]. Si tracci, quindi, da un punto di ag fino a toccare af la
            perpendicolare, la quale si rapporta alle due linee che stanno
            sopra di essa su ga e fa come queste si rapportano a go e fp[6]. Questo è possibile perché si dà un punto vicino a g dove il rapporto è maggiore e un punto vicino
            a o dove il rapporto è minore; pertanto,
            c’è un punto intermedio dove esso non è né maggiore né minore.
            Così, ancora, si può dare una perpendicolare che si rapporta alle
            linee che stanno sotto di essa fino ad o e
            p allo stesso modo in cui queste si
            rapportano a og e pf, seguendo lo stesso procedimento di
            prima[7].

            [image: link to parallel text] 6. Dico che queste due perpendicolari coincidono
            in una sola che taglia parti uguali da og
            verso l’alto e da fp verso il basso e di
            conseguenza anche da go verso il basso e da
            pf verso l’alto. Diversamente, come si
            dimostrerà più avanti, ciò è impossibile. Questa perpendicolare
            sarà dunque [image: \frac{1}{3}] del semilato, per esempio dc; e poiché ca è il
            doppio di dc, ca sarà uguale a fp, pa uguale a fc e fc
            uguale a do. Inoltre, poiché fc è anche uguale a oa,
            fc sarà la metà di da; e poiché dc è [image: \frac{1}{3}] del semilato del triangolo
            isoperimetrico, triplicato il semilato che tocca il cerchio
            inscritto in d, ad
            sarà il semidiametro di questo cerchio inscritto. E questo era ciò
            che si cercava.

            [image: link to parallel text] 7. Che la perpendicolare che si abbassa da g e l’altra che si innalza da o coincidono nel punto d, come detto prima, è così evidente: infatti,
            la perpendicolare che si abbassa fino al suddetto rapporto non può
            stare al di sopra di d; è evidente, poiché
            le linee al di sopra della perpendicolare qui sono minori della
            metà di go e di fp e
            la perpendicolare è certamente maggiore della metà di go. Essa non può nemmeno scendere al di sotto
            di d perché qui le due linee al di sopra
            della perpendicolare sono maggiori della metà di go e di fp e la
            perpendicolare è minore della metà di go.
            Se, dunque, la perpendicolare che si abbassa non può che cadere in
            d, allora anche quella che si innalza non
            può che cadere in d, poiché in d le linee che stanno sopra e quelle che stanno
            sotto sono uguali e dunque le perpendicolari coincidono. Questo
            era ciò che si doveva dimostrare[8].

            [image: link to parallel text] 8. Può essere dimostrato anche in un altro modo.
            In primo luogo, suppongo di poter segnare il semidiametro del
            cerchio inscritto nel triangolo isoperimetrico del cerchio dato su
            ag, e immaginiamo che sia
            ad. Se pure esso è maggiore della metà di ag, sarà tuttavia di molto minore dei due terzi
            [di ag], come risulta dalla dimostrazione
            appena effettuata, da cui segue che il diametro del cerchio,
            triplicato di un settimo va oltre la circonferenza. Si può anche
            condurre dal punto d una perpendicolare dx di lunghezza indefinita e far ruotare af da ag attorno al
            centro a del cerchio dato finché la linea
            compresa tra dx e la circonferenza sia la
            metà di ad. È evidente. Infatti, se af si trova vicino a g,
            questa linea è maggiore della metà di da,
            ma se si avvicina al punto in cui dx taglia
            la circonferenza, allora è minore; dunque essa si trova in un
            punto [intermedio] né maggiore né minore. Se tuttavia questa linea
            è uguale alla metà di ad, allora la parte
            restante di af compresa tra dx e a sarà uguale a gd più la metà di da. E
            tralascio tutto il resto in quanto noto.

            [image: link to parallel text] 9. In secondo luogo suppongo che se la
            perpendicolare da d, per esempio dx, è un sesto della circonferenza del cerchio
            dato, allora la linea ax sarà il doppio di
            ad e le tre linee saranno note una a una:
            la prima è dg, l’altra è la linea di af al di sopra di dx e
            la terza è quella compresa tra d e af. E questo è certo.

            [image: link to parallel text] 10. In terzo luogo suppongo che se af taglia la circonferenza in un punto che
            dista dal punto g un dodicesimo della
            circonferenza, allora la linea dc della
            perpendicolare dx, compreso tra d e la linea fa, sarà un
            terzo di dx che è uguale a un sesto della
            circonferenza del cerchio. Infatti, un terzo [di dx] sarà la metà del semidiametro del cerchio;
            il quadrato del suo semidiametro è un terzo del quadrato del
            semidiametro ax, dunque i due terzi del
            semilato del triangolo inscritto nello stesso cerchio. Questo è
            evidente, infatti il quadrato del semilato del triangolo si
            rapporta al quadrato del semidiametro come 3 a 4. Dunque il
            quadrato dei due terzi del semilato si rapporta al quadrato del
            semilato intero come 4 a 9 e il quadrato del semidiametro sarà
            uguale a 12, di cui un terzo è pari a 4 e questo è certo.

            [image: link to parallel text] 11. In quarto luogo, suppongo che ora ruoti af fino al punto in cui le tre linee, di cui si
            parla nella seconda ipotesi, saranno uguali a dx. Infatti, se af si
            situa vicino a g, esse saranno minori; se
            dista dal punto g più di un dodicesimo
            della circonferenza, saranno maggiori. In un determinato punto,
            quindi, esse non saranno né maggiori né minori di dx, e questo si trova a un sesto della
            circonferenza del cerchio.

            [image: link to parallel text] 12. In quinto luogo suppongo che ora ax ruoti fino a quando il secondo è maggiore
            della metà di ad; allora la prima e la
            seconda, prese insieme, sono maggiori della linea restante. Chiamo
            “linea restante” quella parte di af dalla
            quale è stata sottratta la seconda. Se la seconda è minore della
            metà di ad, allora la prima e la seconda,
            prese insieme, sono minori della linea restante. Tuttavia quanto
            più af si allontana dal punto g, maggiore sarà la somma delle tre; e quanto
            più la seconda è maggiore, minore sarà la somma delle tre linee, e
            quanto più essa è minore, maggiore sarà la somma[9].

            [image: link to parallel text] 13. Dico dunque che quando af è posto sul punto della circonferenza che
            dista da g un dodicesimo della
            circonferenza, allora le tre linee prese insieme sono uguali a dx, cioè a un sesto della circonferenza, dato
            che la seconda è la metà di ad e la prima e
            la seconda prese insieme sono uguali alla linea restante che,
            unita alla terza, è uguale a dx.

            [image: link to parallel text] 14. Se qualcuno negasse questo, allora dovrebbe
            negare che la seconda è la metà di ad.
            Perciò, se lo nega e afferma che le tre linee sono minori di dx, è necessario che sostenga che la seconda è
            tale che le tre linee siano minori, come se la seconda fosse la
            metà di ad. Così, dalla quinta ipotesi,
            egli deve affermare che la seconda è maggiore della metà di ad e se è così allora, stando alla suddetta
            ipotesi, la prima e la seconda insieme superano la linea restante
            ca, che, unita alla terza cd, è uguale a dx; è
            evidente che le tre linee non sono minori, ma maggiori di dx. Così, se egli afferma che le tre linee sono
            maggiori, deve necessariamente sostenere che la seconda è minore
            della metà di ad; e se è così, allora la
            prima e la seconda sono minori della linea restante che, unita
            alla terza, è uguale a dx. Le tre linee
            saranno dunque minori; e qualunque cosa dica chi nega quanto
            abbiamo affermato, risulta il contrario dalla quinta ipotesi. Ne
            consegue necessariamente che la proposizione è vera, che ad è il semidiametro del cerchio inscritto al
            triangolo isoperimetrico, cf è la sua metà
            e dx è uguale a un sesto della
            circonferenza del cerchio dato di cui ag è
            il semidiametro. E questo è ciò che si cercava.

            [image: link to parallel text] 15. Diversamente: dico che le tre linee sono
            uguali alla metà del lato del triangolo isoperimetrico e di
            conseguenza che la prima e la seconda prese insieme sono uguali ai
            due terzi di questo e che la seconda è la metà del semidiametro
            del cerchio inscritto nel triangolo.

            [image: link to parallel text] 16. Se una di queste affermazioni è vera, tutte
            le altre sono vere e questo è certo. Se lo neghi, cadi in
            contraddizione. Infatti, se, considerando la figura di sopra, dici
            che le tre linee sono minori del semilato del triangolo in
            questione, allora dici che la seconda è maggiore e minore della
            metà del semidiametro del cerchio inscritto al triangolo in
            questione. Se dici che essa è maggiore, affermi che le tre linee
            prese insieme sono minori, come se la seconda fosse la metà del
            semidiametro del cerchio inscritto nel triangolo. Infatti, quanto
            maggiore è la seconda, tanto minori sono le tre linee dalla quinta
            ipotesi. Dici, infatti, che la seconda è minore della metà del
            semidiametro in questione perché affermi che la prima e la
            seconda, prese insieme, sono minori della linea restante di af da cui è stata tolta la seconda[10]. Altrimenti, infatti, le tre linee non sarebbero minori
            della metà del lato del triangolo. Dici anche che la terza è
            maggiore e minore di [image: \frac{1}{3}] del semilato del triangolo. Se
            infatti le tre linee prese insieme sono minori della metà del lato
            del triangolo e se la somma della prima e la seconda è maggiore
            della linea restante di af, allora la terza
            è minore di [image: \frac{1}{3}] del semilato; e poiché la
            prima e la seconda sono ancora minori della linea restante di af, allora la terza è maggiore di [image: \frac{1}{3}] del semilato;
            la stessa cosa accade quando dici che le tre linee sono maggiori
            del semilato. È dunque chiaro che chi nega afferma due
            contraddizioni.

            [image: link to parallel text] 17. È evidente che il diametro di un cerchio dato
            è uguale alla somma del semidiametro del cerchio inscritto al
            triangolo isoperimetrico e dei [image: \frac{2}{3}] del lato del triangolo[11]. Pertanto, se la linea fosse uguale al diametro
            triplicato per [image: \frac{1}{7}] di esso e se a quella
            togliessi il semidiametro del cerchio inscritto corrispondente e i
            [image: \frac{2}{3}] del
            lato del triangolo, allora questa somma sarebbe maggiore del
            diametro, perché la linea uguale al diametro triplicato per
            [image: \frac{1}{7}] di
            esso è maggiore della circonferenza; e se la linea fosse uguale al
            diametro triplicato e ai [image: \frac{10}{71}] di esso e se ad essa
            togliessi il semidiametro del cerchio inscritto nel triangolo in
            questione e [image: \frac{2}{3}] del lato del triangolo allora
            questa somma sarebbe insieme minore del diametro, perché il
            diametro, triplicato per i suoi [image: \frac{10}{71}], è minore della
            circonferenza, come Archimede[12] e altri hanno dimostrato. E potresti provarlo anche
            numericamente.

            [image: link to parallel text] 18. Bisogna anche considerare che chi nega la
            quadratura del cerchio, al fine di non affermare che ciò che è
            curvo e ciò che è rettilineo coincidono, afferma, attraverso la
            sua negazione, che due contraddizioni coincidono. Se si applicherà
            accuratamente, mostrerà che le proposizioni matematiche sono vere
            perché in caso contrario seguirebbe la quadratura del cerchio, e
            parimenti perché in caso contrario seguirebbe che il cerchio non
            si può quadrare. Perciò, dall’affermazione e dalla negazione della
            quadratura del cerchio possono essere provate come vere tutte le
            proposizioni matematiche, di cui ho già detto abbastanza
            altrove[13], così, la dotta ignoranza è venuta a capo di tutto ciò
            che bisogna sapere per rispondere alla domanda se ci sia una
            coincidenza delle contraddizioni oppure no. Su ciò ho scritto
            qualcosa, anche se in maniera del tutto insufficiente, in tre
            libri[14].

            [image: ]
Fig. 2
[image: link to parallel text] 19. Tuttavia è certo che se si moltiplica il
            semidiametro ga del cerchio dato per ab e si triplica per dx,
            si ottiene un rettangolo uguale al cerchio (cfr. figura 2); e se si cerca
            per la nona proposizione del sesto libri di Euclide il medio proporzionale tra ag e
            ab, ossia ae, che è
            tre volte dx, allora ae sarà il lato del quadrato che è uguale al
            cerchio, come si è già appreso prima. A quei tre libri, aggiungo
            questa quadratura del cerchio cesariano.

            Terminato il 6 Agosto 1457 presso Andratz.

          
        Note a piè pagina
[1] Questo opuscolo, indirizzato all’imperatore Federico IV, è
              stato completato il 6 Agosto 1457 quando Cusano era trattenuto
              dal 10 Luglio nella fortezza di Andratz, isolato e privato dei
              suoi libri. Alla fine del testo (§18) il cardinale manifesta una
              velata avversione verso i suoi oppositori sulla questione della
              quadratura del cerchio.

            [2] Cfr. Cusanus 1982, 12, 31, 13–15.

            [3] Cfr. Cusanus 1963, III, 11–12; 375, 8; 376, 10–16.

            [4] Se indichiamo con n il numero di
                lati del poligono, [image: \rho_n] il diametro del suo cerchio
                inscritto (la “prima”), [image: \r_n] il semidiametro del suo cerchio
                circoscritto (la “seconda”), [image: s_n] il suo lato, allora si può
                riassumere la proposizione in questo modo: se [image: \text{l’arco }gf=\frac{1}{12}                 \text{ della circonferenza}=\frac{2\pi r}{12}], se
                [image: cf=\frac{ad}{2}] e se [image: ax=2ad], allora [image: dx=\frac{1}{6} \text{ della                 circonferenza}=\frac{2\pi r}{6}]. La ragione sta nel
                fatto che [image: ad=\rho_3=\text{raggio del cerchio inscritto nel                 triangolo equilatero isoperimetrico al cerchio di                 raggio}ag]; [image: ax=r_3=\text{raggio del cerchio circoscritto al                 triangolo stesso}]; [image: dx=\text{semilato del triangolo}=\frac{2\pi                 r}{6}]. Secondo Hofmann e Hofmann (1980, nota 3, 243), [image: \rho_3=\frac{(2r\sqrt{3})}{(4+\sqrt{3})}]
                e se il perimetro del triangolo è U avremo [image: U=6\rho_3\sqrt{3}=2r[\frac{18}{(4+\sqrt{3})}]];
                [image: \frac{\text{perimetro                 del triangolo}}{\text{circonferenza del                 cerchio}}=\frac{18}{(4+\sqrt{3})}=3,1402]. Questo
                valore approssimativo di [image: \pi] è di poco più piccolo del limite
                inferiore di  (3,1408).

              [5] [image: \frac{2}{3}dx<ag<dx\iff\frac{2}{3}];
                [image: \frac{2\pi                 r}{6}<ag<\frac{2\pi r}{6}]. Questa
                diseguaglianza si ottiene così: nel cerchio di raggio r la circonferenza [image: 2\pi r] è uguale a [image: \frac{1}{6}] del
                semilato [image: \frac{\pi                 r}{3}] del triangolo equilatero isoperimetrico al
                cerchio, e da un lato è maggiore di 6r
                (dall’esagono regolare inscritto); dall’altro è minore di 8r (dal quadrato inscritto), così da un lato
                [image: r<\frac{\pi                 r}{2}]; dall’altro [image: \frac{2}{3}\times\frac{\pi                 r}{3}<\frac{8r}{9}<r].

              [6] [image: go=fp=dx];
                [image: ao=\frac{ad}{2}]; [image: ap=\frac{ac}{2}]. La
                perpendicolare taglia ag in d e af in c, così, per determinare ad, si tstabilisce il punto d su ag grazie alla
                proporzione continua: [image: \frac{dc}{(dg+cf)}=\frac{(dg+cf)}{(go+fp)}].
                Poniamo [image: dc=u],
                così [image: dx=3u],
                [image: ac=2u],
                [image: ad=u\sqrt{3}];
                [image: dg=r–u\sqrt{3}], [image: cf=r–2u]; [image: go=fp=2u]. Per la
                proposizione [image: \frac{u}{[2r–u(2+\sqrt{3})]}=\frac{[2r–u(2+\sqrt{3})]}{4u}=\sqrt{(\frac{u}{4u})}=\frac{1}{2}],
                si ha [image: u=\frac{2r}{(4+\sqrt{3})}], [image: r=(2+\frac{\sqrt{3}}{2})u].

              [7] Si può anche determinare d con la
                proporzione: [image: \frac{dc}{(do +cp)}=\frac{(do +cp)}{(go                 +fp)}]. Ponendo [image: dc=v], risulta che [image: do=go–dg=v(2+\sqrt{3})–r], [image: cp=fp–cf=4v–r]; così la
                proposizione si trasforma in [image: \frac{v}{[v(6+\sqrt{3})–2r]}=\frac{[v(6+\sqrt{3})–2r]}{4v}=\frac{1}{2}]
                e [image: v=\frac{2r}{(4+\sqrt{3})}=u].

              [8] Si tratta di dimostrare che queste due determinazioni di
                d coincidono in una sola.

                [image: dc=\frac{1}{3}dx]; [image: ca=2dc]; [image: ca=fp]; [image: pa=fc]; [image: fc=do]; [image: fc=oa]; [image: fc=\frac{ad}{2}];
                [image: dc=\frac{1}{3}dx]; quindi [image: 3dc=dx]; [image: ad=\rho_3]. Se la
                perpendicolare fosse sopra d allora
                [image: dg\text{ }(e\text{                 }fc)<\frac{go + fp}{2}\text{ }\text{e                 }dc>\frac{go}{2}]. Se la perpendicolare fosse
                sotto d allora [image: dg\text{ }(\text{e }fc)>\frac{go +                 fp}{2}\text{ }\text{e }dc<\frac{go}{2}]. Accade
                solo in d che [image: dg=\frac{go +fp}{2}=\frac{2}{3}dx].
                Dunque: [image: cf+dg=od+dg=ag–cf=ac=\frac{2}{3}dx].

              [9] Si possono ricapitolare le cinque ipotesi e le loro
                concatenazioni:

                in primo luogo: [image: \frac{ag}{2}<ad<\frac{2}{3}ag];
                da cui [image: \frac{ag}{2}<\rho_3<\frac{2}{3}ag];

                in secondo luogo: se [image: dx=\frac{2\pi r}{6}], allora [image: ax=2ad] e dunque si
                conosceranno dg, cf e dc.

                in terzo luogo: se [image: \text{l’arco }gf>\frac{2\pi r}{12}]
                allora [image: dc=\frac{dx}{3}];

                in quarto luogo: [image: dg+cf+dg=dx=\frac{2\pi                 r}{6}];

                in quinto luogo: [image: \text{la linea residua}=af–cf=ac]. Se
                af si allontana da g allora [image: dg+cf>ac]; se [image: cf<\frac{ad}{2}],
                allora [image: dg+cf<ac]. Più af si allontana da g
                più ([image: dg+cf+dc])
                cresce; più cf cresce più ([image: dg+cf+dc]) decresce; più
                cf decresce più ([image: dg+cf+dc]) cresce.

              [10] Se [image: dg+cf+dc<dx], allora [image: cf>\frac{ad}{2}] e
                [image: dg+cf>ac].
                Ma [image: ac+dc=dx];
                dunque [image: dg+cf+dc>dx]. Se [image: dg+cf+dc>dx], allora
                [image: cf<\frac{ad}{2}] e [image: dg+cf<ac]. Ma
                [image: ac+dc=dx];
                quindi [image: dg+cf+dc<dx]. Pertanto l’ipotesi di
                partenza è esatta: [image: ad=\rho_3]; [image: cf=\frac{ad}{2}]; [image: dx=\frac{2\pi                 r}{6}].

              [11] Sappiamo che [image: cf+dg=\frac{2}{3}dx=\frac{1}{3}S_3];
                [image: ag+af=2r];
                [image: (ad+dg)+(ac+cf)=ad+ac+(dg+cf)=\rho_3+\frac{1}{3}S_3+\frac{1}{3}S_3=\rho_3+\frac{2}{3}S_3].

              [12] Cfr. Archimedes 1910b, prop. 3.

              [13] Cfr. Cusanus 2010c, 25.

              [14] Cfr. Cusanus 1972a, I–III; Cusanus 1972a, I, 4, 12; Cusanus 1972a, I, 13, 35; I, 16, 43; I, 21, 64; II, 9, 148.

              
  La perfezione matematica

          Al
          reverendissimo D. Antonio, Padre in Cristo, cardinale della Santa
          Romana Chiesa, sacerdote di San Crisogono, La perfezione matematica
          di Niccolò, cardinale di San Pietro in Vincoli[image: link to parallel text] [1].

          1. La vostra nobile mente, Padre
          reverendissimo, è attenta a considerare le speculazioni anche delle
          menti ottuse e altre volte mi ha richiesto qualcosa di nuovo. E,
          dato che un piede malato mi ha tenuto fuori dalla corte papale,
          costringendomi a stare due giorni a casa, ho redatto La perfezione matematica, che vi invio, al fine
          di raccomandarvela, in quanto sperimento in essa la forza [della
          dottrina] delle coincidenze finora sconosciuta nelle questioni
          teologiche. Infatti, da essa, come mostrano gli esempi che aggiungo,
          si attinge tutto ciò che c’è da sapere in matematica, in quelle
          oscure questioni da sempre studiate con estremo zelo, ma che finora
          non hanno portato a niente. D’altra parte, in che modo la matematica
          ci conduce quasi all’assoluto divino ed eterno, la vostra dotta
          paternità lo sa meglio di me, voi che siete l’apice dei teologi. Ho
          inoltre inviato un piccolo scritto su come considero lo specchio e
          le immagini enigmatiche[2], nel quale, se il reverendo padre vorrà interessarsene un
          po’, vedrà ad un tratto, se ho ben diretto la visione della mente al
          principio delle cose, ciò che anche i più dotti hanno temuto di
          scrivere. Essendo tutto ciò più facile da contemplare che da
          spiegare, non mi sono vergognato a inviarvelo, e spero di essere
          guidato dal vostro giudizio, sapendo che a nessun altro, se non al
          padre che mi ama, comunico questi segreti che mi sembrano forse più
          preziosi di quanto siano in realtà: correggerò la mia valutazione
          secondo il vostro giudizio, che supplico di inserire in questi
          scritti.

          [image: link to parallel text] 2. La mia intenzione è quella di arrivare alla
          perfezione matematica attraverso la coincidenza degli opposti. E
          poiché questa perfezione consiste per tutti nel rendere una
          grandezza rettilinea uguale a una [grandezza] curvilinea[3], mi propongo di cercare il rapporto di due linee
          rette[4] che stanno tra loro come la corda e il suo arco; una volta
          conosciuto questo rapporto, so come rendere una grandezza curvilinea
          uguale a una rettilinea; ma, per scoprire tali linee, è necessario
          che io conosca il rapporto fra una corda e il suo arco, affinché,
          una volta conosciuto tale rapporto, sia in grado di progredire in
          quest’arte. Ma come posso conoscere il rapporto fra una qualunque
          corda data e il [suo] arco, visto che forse fra queste grandezze
          così diverse non c’è alcun rapporto numericamente determinabile?

          
          [image: link to parallel text] 3. Sarà dunque necessario che ricorra alla visione
          intellettuale, che vede coincidere la corda minima, ma non
          determinabile, con l’arco minimo. Infatti, quanto più la corda è
          minore, tanto più la freccia diminuisce, come la freccia de della corda bc è minore
          della freccia ge della corda fh, poiché bc è minore di
          fh, e così via[5](cfr. figura 1).

          [image: ]
Fig. 1
[image: link to parallel text] 4. Dunque, la minima corda, di cui non si può dare
          una ancora minore, se fosse determinabile, non avrebbe una freccia
          [corrispondente], e non sarebbe neanche minore del suo arco. Qui,
          dunque, corda e arco coinciderebbero, se in essi si pervenisse alla
          grandezza minima. L’intelletto vede ciò perfettamente come
          necessario, sebbene sappia che né l’arco né la corda – essendo
          grandezze – sono le minime in assoluto, né in atto, né in potenza,
          dal momento che il continuo è sempre divisibile[6]. Per pervenire tuttavia alla conoscenza del loro rapporto,
          mi affido alla visione intellettuale, e dico di vedere dove si trova
          l’uguaglianza fra la corda e l’arco, ossia nel minimo assoluto[7] di ciascuno dei due. Vista questa uguaglianza, proseguo la
          ricerca per mezzo di un triangolo rettangolo, e ciò mediante la
          proposizione seguente.

          
            Proposizione

            
            [image: link to parallel text] 5. Se si pone il lato maggiore di un triangolo
            rettangolo come prima linea e come semidiametro del cerchio, il
            lato minore come seconda linea e come semicorda, e il lato
            restante come terza linea, il rapporto fra il semiarco e la
            semicorda sarà uguale a quello tra la linea uguale a tre volte la
            prima linea e la linea uguale a due volte la prima più la
            terza[8](cfr. figura 2). Così, se il triangolo rettangolo è ABC, il lato
            maggiore ac è la prima linea e il
            semidiametro del cerchio, il lato minore bc
            è la seconda linea e la semicorda, il lato ab è la terza linea e hc
            è il semiarco, de è uguale a tre ac, e fg è uguale a due
            ac più ab. Dico che
            il rapporto fra hc e bc è uguale a quello fra de e fg.

            [image: ]
Fig. 2

          
            Spiegazione della proposizione

            [image: link to parallel text] 6. Un triangolo rettangolo è tanto minore, quanto
            minore è la differenza tra la prima linea e la terza. Se dunque si
            potesse dare il minimo triangolo rettangolo, non ci sarebbe alcuna
            differenza tra prima linea e la terza; e poiché la seconda linea
            sarebbe la minima, allora, posta la semicorda, questa non sarebbe
            minore del semiarco, stando alle premesse.

            Il triangolo rettangolo massimo si ha invece quando la
            differenza tra la prima e la terza linea è massima. Ciò accade
            quando la terza linea è uguale alla seconda, della quale non c’è
            una linea minore, e così la seconda è la semicorda del quadrante.
            Sia ABC il triangolo rettangolo (cfr. figura 3).

            [image: ]
Fig. 3
Dico che è possibile che, se si aggiunge una linea ad ac, e si aggiunge la stessa linea ad ab, la maggiore si rapporti alla minore come il
            semiarco hc si rapporta alla semicorda bc. Do come certo che possa esservi una tale
            linea che si aggiunge ad ac e ad ab, come posto sopra, dal momento che si può
            dare una linea che, aggiunta ad ac e ad ab, formi linee il cui rapporto è maggiore di
            quello fra il semiarco hc e bc, ed è certo che si può dare una linea che,
            aggiunta, formi linee il cui rapporto è minore di quello fra hc e bc. Dunque, [è
            certo che] se ne può dare anche una che, aggiunta, formi linee il
            cui rapporto non né maggiore, né minore di quello fra hc e bc, dal momento che
            non è contraddittorio che le linee rette si rapportino tra loro
            come la corda e l’arco, ossia che la corda sia commensurabile o
            incommensurabile rispetto all’arco[9].

            [image: link to parallel text] 7. È chiaro anche che, qualunque sia questa
            linea, se nel triangolo rettangolo minimo essa è aggiunta anche ad
            ac e ad ab, la
            proposizione è verificata, essendo qui la prima e la terza uguali,
            così come lo sono il semiarco e la semicorda. Di conseguenza,
            qualunque sia la linea aggiunta, la proposizione resta vera. E
            poiché la linea che si aggiunge nel triangolo rettangolo massimo è
            la stessa che si aggiunge in quello minimo, essa resterà la
            medesima in tutti i triangoli rettangoli intermedi.

            E questa è la base di tale dottrina, da cui consegue che, se
            trovo la linea che bisogna aggiungere nel triangolo rettangolo di
            cui bc è la semicorda del quadrante, e la
            aggiungo anche laddove bc è la semicorda
            dell’esagono, allora scopro che il rapporto tra tali linee è
            uguale a quello tra gli archi, ossia di 3 a 2. È chiaro che ho
            trovato la linea che bisogna aggiungere in tutti i casi, e su
            questo non c’è dubbio.

            [image: link to parallel text] 8. Ciò risulta così chiaro facilmente. È
            possibile che il rapporto tra la linea uguale alla somma fra la
            terza [linea] e due volte la prima linea del triangolo rettangolo
            e la linea risultante dalla somma fra la prima [linea] e quattro
            volte la seconda [linea] sia in qualche caso uguale a quello tra
            la semicorda e il semiarco. Questo è certo. Infatti, si dà un caso
            in cui il rapporto è minore, come nei triangoli rettangoli
            maggiori, e uno in cui esso è maggiore, come in quelli minori, il
            che di per sé è evidente. Si dà dunque un caso in cui esso non è
            né maggiore né minore. In qualsiasi caso ciò accada, bisogna, per
            quanto premesso, che la linea aggiunta alla terza sia la stessa di
            quella aggiunta alla prima. Ma quella aggiunta alla terza è due
            volte la prima. Di conseguenza, quella aggiunta alla prima sarà
            due volte la prima, e ciò accadrà dove la seconda è la metà della
            prima, vale a dire la semicorda dell’arco dell’esagono. Di
            conseguenza, bisogna aggiungere il diametro[10].

            [image: link to parallel text] 9. Potrai vedere questo così e anche in un altro
            modo. Se, per esempio, si desse un caso in cui il rapporto tra la
            somma di due volte la prima e due volte la seconda e tre volte la
            prima è uguale a quello tra la semicorda e il semiarco, si
            argomenterebbe come prima; ma, poiché la linea aggiunta alla terza
            e alla prima dev’essere la stessa, e poiché alla prima si
            aggiungono due volte la prima, e queste si aggiungono a due volte
            la seconda, allora due volte la seconda sarà uguale alla terza, e
            la linea aggiunta sarà il diametro. E potrai apportare tutti gli
            argomenti simili che vorrai.

            Tuttavia, la proposizione dice che la linea aggiunta ad ac e ab è il diametro,
            ossia il doppio di ac, il che è lo
            stesso[11]. Da quanto detto potrai provare che lo stesso accade in
            tutti i casi in modo proporzionale.

            
            
            [image: ]
Fig. 4
[image: link to parallel text] 10. Ma, affinché tu veda che è così come afferma
            la proposizione, prendi un doppio triangolo rettangolo, come sono
            ABC e ABD, descrivi l’arco dc, prolunga
            anche ab fino a toccare l’arco, e sia be la freccia (cfr. figura 4). Dico che è
            possibile che un triangolo composto da questi triangoli rettangoli
            sia tale che, se ac e ad sono prolungate all’infinito, e una corda,
            come gf, è parallela a dc ed è uguale a [la somma di] ad, ac e ab, allora
            l’arco, di cui gf è la corda, supererà la
            corda della freccia be, ossia di tanto
            quanto ae supera ab.

            [image: link to parallel text] 11. Non si può negare che ciò in qualche caso sia
            possibile, per esempio [nel caso in cui] tre semidiametri meno la
            freccia sono il triplo della corda; tuttavia, se ciò accada in
            questo o in un altro caso, non cambia: è sufficiente che sia
            possibile [almeno] in un caso[12].

            E se volessi, potresti provarlo come prima, poiché ciò si dà
            nel caso in cui l’eccesso è minore della freccia, e dove l’eccesso
            è maggiore, e questo lo do per certo. Esso inoltre si dà nel caso
            in cui [l’eccesso] non è né maggiore, né minore, secondo quanto ho
            detto in precedenza. In qualsiasi caso ciò accada, è evidente che
            [la somma di] ac, ad
            e ab si rapporta a tre ac come la corda all’arco. Ciò è evidente
            poiché [la somma di] 3ac e 3ac meno la freccia, in qualche caso, è uguale a
            [la somma de] la corda e l’arco — e questo è certo —, o anche [nel
            caso in cui] l’arco supera la corda di suddetta freccia. E si
            ottiene quel che si cerca [ossia l’uguaglianza], o all’interno o
            all’esterno. Se [tale uguaglianza] si realizza all’interno,
            allora, poiché l’arco supera la corda di una lunghezza minore
            della suddetta freccia, la corda sarà maggiore del caso in cui
            l’arco supera la corda della suddetta freccia, ma è impossibile
            che un arco minore sottenda una corda maggiore. Lo stesso
            accadrebbe se si affermasse che [l’uguaglianza], avviene
            all’esterno: un arco più grande sottenderebbe una corda minore.
            Perciò la linea da aggiungere ad ac e ab è 2ac, ossia il
            diametro del cerchio, e questa è la verità.

            [image: link to parallel text] 12. Tuttavia, poiché è il diametro dello stesso
            cerchio, si potrà forse dire che, in qualsiasi cerchio, la linea
            da aggiungere è il diametro: non si dirà che è il diametro di un
            cerchio maggiore, poiché allora non si avrebbe la verità nel
            cerchio massimo di cui non ce n’è uno che sia in atto maggiore. E
            neanche si potrà dire che è di un cerchio minore, poiché nel
            cerchio minimo in atto non si avrebbe la verità, e quindi in
            nessun cerchio, dal momento che ciò che si dice di un cerchio in
            quanto cerchio deve necessariamente valere per tutti [i cerchi]. E
            se non vale per tutti, allora non vale per nessuno; tuttavia, non
            importa che la ragione sia questa o un’altra. Il senso della
            proposizione è così evidente.

            [image: link to parallel text] 13. Aggiungerò un’altra dimostrazione di questa
            linea che deve essere aggiunta[13](cfr. figura 5). Si supponga una linea, di cui ac è una parte aliquota[14], che si rapporta alla linea che essa supera della stessa
            lunghezza di cui ac supera ab, in un rapporto maggiore di quello fra hc e bc: sia tale linea
            il quadruplo di ac. Queste cose sono
            assolutamente vere. Di conseguenza, si può dare una linea, di cui
            ac è una parte aliquota, che si rapporta
            alla linea che essa supera della lunghezza di cui ac supera ab come hc si rapporta a bc.
            Questa linea, essendo necessariamente maggiore del doppio e minore
            del quadruplo, sarà tripla rispetto ad ac.
            Per questo, bisogna aggiungere ad ac il
            doppio di se stessa, vale a dire il diametro.

            [image: ]
Fig. 5
[image: link to parallel text] 14. Perché tu veda anche numericamente quelle
            verità che ho detto sul doppio e sul quadruplo di ac, poni, secondo l’approssimazione di
            Archimede, che ac è 7, ab circa 5 e bc, essendo
            nel quadrante, anche uguale a 5. hc sarà 5
            e mezzo secondo l’approssimazione della posizione, poiché il
            semicerchio è 3ac più un settimo, cioè
            circa 22; e così il rapporto fra hc e bc sarà circa come tra 5 e mezzo e 5, o tra 11
            e 10, e l’eccesso di ac rispetto ad ab circa 2. È chiaro che il rapporto tra il
            doppio di ac, cioè 14, e la lunghezza più
            piccola di tanto quanto è la differenza tra ac e ab, cioè circa 2,
            per esempio 12, è maggiore di quello fra 11 e 10, e il rapporto
            tra 4ac, cioè 28, e la grandezza minore di
            due [unità], cioè 26, è minore di quello tra 11 e 10[15]. La linea, di cui ac deve essere
            una parte aliquota, deve essere maggiore del doppio e minore del
            quadruplo. Essa sarà dunque il triplo, poiché essa sola è la linea
            di mezzo, di cui ac è la parte
            aliquota.

            [image: link to parallel text] 15. Invece il motivo per cui l’argomentazione
            afferma che, della linea che si sta cercando, ac deve essere una parte aliquota è questo:
            poiché deve essere la stessa linea in tutti i triangoli
            rettangoli, è necessario che si prenda ac,
            che è anche la sola e unica in tutti, e non ab o bc che variano
            sempre. Si potrebbero aggiungere altri innumerevoli modi per
            dimostrare la proposizione, ma questi sono [quelli] fondamentali e
            sufficienti.

            [image: link to parallel text] 16. Molte cose nascoste si sono qui svelate,
            poiché vedi come ciò che si verifica per il massimo e il minimo si
            verifica per gli intermedi, e colui che vede il massimo coincidere
            con il minimo, cogliendo insieme il massimo e il minimo, in ciò
            vede tutto[16]. E, mediante questo procedimento, saprai come misurare
            grandezze diverse, che sembrano incommensurabili. Tutto ciò mi
            sembra importante e finora intentato. Archimede, infatti, che voleva trovare una linea retta che avesse
            la stessa misura della circonferenza di un cerchio attraverso
            l’elica, non ottenne nulla da quest’arte, né scoprì ciò che egli
            cercava in particolare. Egli sbagliò, infatti, perché presupponeva
            ciò che cercava: l’elica o spirale, infatti, non può essere
            descritta senza il movimento di due punti, dove il rapporto tra i
            movimenti è uguale al rapporto esistente fra il semidiametro e la
            circonferenza del cerchio. Dunque, parlando dell’elica, egli
            presuppose proprio ciò che cercava[17]. Ma così stanno le cose. Torniamo al nostro compito e
            dalla ricchezza di questa proposizione deduciamo qualche
            corollario, affinché da questi, con un procedimento equivalente,
            se ne possano spiegare altri innumerevoli.

          
          
            Corollario

            [image: link to parallel text] 17. Il rapporto fra tre semidiametri e tre
            semidiametri meno la freccia della corda di un quadrante o[18] di un [arco] minore è uguale a quello fra un arco
            qualsiasi e la sua corda (cfr. figura 6).

            [image: ]
Fig. 6
Sia bc la corda di un quadrante o di un
            arco minore e si conduca una linea dal centro a fino a toccare la circonferenza nel punto e, passando per il punto medio di bc, ossia d. Il rapporto
            fra tre ae e la somma di due ae e ad è uguale al
            rapporto fra l’arco e la corda bc. Parlando
            della corda del quadrante o di un [arco] minore, è evidente che
            sulla [corda] maggiore il lato minore del triangolo rettangolo non
            può essere la semicorda, che tuttavia è ciò che si richiede. Il
            corollario risulta chiaramente evidente dalle premesse.

          
          
            Corollario

            [image: link to parallel text] 18. Risolvere un dato arco in una retta.

            Se l’arco è un quadrante o un [arco] minore, prendilo così
            com’è; se è maggiore, prendi la parte aliquota di esso in modo che
            sia un quadrante o un [arco] minore. Sia bc
            l’arco del quadrante da risolvere in una retta (cfr. figura 7). Traccia dal
            centro a linee di lunghezza infinita che
            passano per b e c, e
            un’altra, ad, che taglia la metà della
            corda, e, fra le infinite linee, descrivi una linea ef parallela alla corda bc che sia uguale a [la somma di] ab, ad e ac.

            [image: ]
Fig. 7
Su ef riporta ab,
            e sia fg uguale ad ab. Traccia la linea ag,
            e indica con la lettera h il punto in cui
            essa taglia la corda bc. Dico che hc è un terzo dell’arco. Dunque, triplica hc, e hai trasformato l’arco in una retta.
            Oppure traccia la linea parallela a bc
            verso il centro, ossia ikl, in modo che [la
            somma di] ai, ak e al siano uguali alla corda bc, e ai sarà un terzo
            dell’arco. Tutto ciò è evidente da sé[19].

          
          
            Corollario

            [image: link to parallel text] 19. Risolvere una data retta in un arco.

            Sia ab la linea retta che vuoi risolvere
            nel quadrante di un qualsiasi cerchio: traccia dal centro o linee perpendicolari di lunghezza indefinita,
            ossia od e oe, e fai
            passare dalla metà dell’angolo un’altra linea, of, e segna la terza parte della linea ab, che vuoi risolvere [in arco], su od e oe, e sia og un terzo di ab, e
            allo stesso modo oh; traccia gih (cfr. figura 8).

            [image: ]
Fig. 8
Di conseguenza, traccia kl parallela a
            gih, uguale a [la somma di] oh, oi e oh, e descrivi
            il quadrante avente come corda kl, poiché è
            la linea a cui ab è uguale. E se volessi
            risolverla in un altro arco, minore di un quadrante, fa in questo
            modo. Se esso è più grande, prendi una parte aliquota. Per
            esempio, se vuoi ridurla a un cerchio, prendi la quarta parte
            della linea retta, risolvila in un quadrante e hai ridotto il
            tutto in un cerchio.

            [image: link to parallel text] 20. Se tu volessi veramente risolvere una data
            retta nell’arco di un dato cerchio, nella sua totalità o in una
            sua parte aliquota, procedi come sopra descritto, variando
            l’angolo [compreso tra] od e oe fino a raggiungere la corda uguale a [la
            somma di] og, oi e oh[20].

          
          
            Corollario

            [image: link to parallel text] 21. Risolvere un dato arco di cerchio nell’arco
            di un altro cerchio.

            Ciò si ottiene risolvendolo dapprima in una retta, e poi la
            retta in un arco di un altro cerchio, come descritto sopra.

          
          
            Corollario

            [image: link to parallel text] 22. Trovare angoli che si rapportano tra loro
            come linee date.

            Ciò si ottiene risolvendo le linee in archi di uno stesso
            cerchio, e tracciando dal centro i raggi[21] fino agli estremi di tali archi[22].

          
          
            Corollario

            [image: link to parallel text] 23. Il rapporto fra il semidiametro e il
            semidiametro meno la freccia è pari al rapporto fra un terzo
            dell’arco e l’eccesso di cui la corda supera due terzi del suo
            arco (cfr. figura 9).

            [image: ]
Fig. 9
Sia bc la corda di un quadrante; su di
            essa hai segnato, stando a quanto premesso, due terzi dell’arco,
            cioè cd e de. Dico
            che il rapporto fra un terzo dell’arco de e
            l’eccesso eb, di cui la corda supera i due
            terzi, è pari al rapporto fra il semidiametro e il semidiametro
            meno la freccia[23]. Questo corollario è evidente da quanto premesso. Ed è
            vero nel triangolo rettangolo massimo, in quello minimo, e in
            tutti quelli intermedi.

          
          
            Corollario

            [image: link to parallel text] 24. Trovare la corda di un dato arco di una parte
            aliquota di un semicerchio.

            Poni il caso che, una volta conosciuta la corda di un
            quadrante, tu voglia conoscere la corda di un arco pari alla metà
            del quadrante. Conoscendo la parte della corda del quadrante che è
            uguale a un terzo dell’arco, prendi la sua metà, aggiungi a questo
            uno simile[24], e cerca l’eccesso che si rapporta a un terzo come il
            semidiametro meno la freccia si rapporta al semidiametro[25].

            [image: link to parallel text] 25. Aggiungerò qui precisi corollari.

            Se tre semidiametri meno la freccia sono il triplo della corda,
            l’arco sarà uguale al semidiametro.

            Se essi sono il doppio della corda, l’arco si rapporterà al
            semidiametro come tre a due[26].

            Tre semidiametri sono il medio proporzionale fra tre
            semidiametri meno la freccia e il semicerchio[27].

            Se tre semidiametri meno la freccia sono multipli della corda,
            tre semidiametri meno la freccia saranno multipli della corda
            della metà dell’arco e in modo proporzionale di una qualsiasi
            parte aliquota.

            I tre lati di un triangolo equilatero saranno uguali alla
            circonferenza di un cerchio, il cui diametro è la terza parte dei
            due lati e della linea retta condotta da un lato alla metà del
            lato opposto[28].

            [image: link to parallel text] 26. Se dal centro si conducono tre linee – una
            che passi per il punto iniziale della corda del quadrante o di un
            arco minore, l’altra per la metà, la terza per il punto finale –
            che terminano su una linea parallela alla corda, di modo che il
            rapporto fra queste tre linee e la corda sia pari a quello fra la
            circonferenza e l’arco, allora la linea condotta per il punto
            iniziale della corda, triplicata, è uguale alla circonferenza.

            L’arco uguale a tre quarti del diametro supera la sua corda
            della metà della freccia.

            Il diametro di un cerchio è uguale a due terzi dei lati di un
            triangolo isoperimetrico e al semidiametro del cerchio inscritto
            nello stesso triangolo.

            L’eccesso del semicerchio sulle due corde di un quadrante è
            pari all’eccesso della diagonale[29] del quadrato sul suo lato, se la diagonale è uguale alla
            terza parte del semicerchio[30].

            Il rapporto di tre diametri di un cerchio e la sua
            circonferenza è uguale al rapporto tra 14 più la radice di 36 per
            [image: \frac{3}{4}] e
            21[31].

            La dottrina sulle corde è ora esaurientemente trattata.

            La dottrina della quadratura del cerchio è giunta ormai al suo
            fine. Quest’arte assolutamente perfetta insegna che, a seconda del
            rapporto fra date linee, siano esse commensurabili o
            incommensurabili, si danno linee, superfici delimitate da linee
            dritte[32], da linee curve, e solidi.

            Dalla coincidenza fra la tangente minima e l’arco minimo
            traggo, inoltre, la seguente proposizione:

          
          
            Proposizione

            [image: link to parallel text] 27. Se si pone il secondo lato di un triangolo
            rettangolo come semidiametro di un cerchio, e il terzo come linea
            tangente al cerchio, o viceversa, e sarà descritto il cerchio, il
            rapporto fra la tangente e l’arco che cade dentro il triangolo
            rettangolo, sarà pari al rapporto fra la superficie delimitata da
            linee dritte e quella delimitata dalla linea curva
            (cfr. figura 10).

            [image: ]
Fig. 10
Se ABC è il triangolo rettangolo, bc la
            tangente, e ab il semidiametro del cerchio
            descritto, il cui arco bd cade nel
            triangolo rettangolo, il rapporto fra bc e
            bd sarà pari al rapporto fra la superficie
            delimitata da linee diritte ABC e la superficie delimitata dalla
            linea curva ABD.

            La dimostrazione è la seguente: ciò si verifica nel minimo, se
            si potesse dare, e quindi in tutti i casi, poiché non è necessario
            stabilire che il triangolo rettangolo sia o no il massimo.

            [image: link to parallel text] 28. Risolvere una superficie data, delimitata da
            un arco e da raggi[33], in un triangolo rettangolo.

            Dato ABC, si risolva l’arco bd nella
            linea retta bc, e si chiuda il triangolo
            rettangolo con ad. Così, che bd sia o meno proporzionale alla circonferenza,
            sai come si riconduce una [qualunque] superficie a una superficie
            delimitata da linee diritte. E sai come risolvere un cerchio in un
            triangolo rettangolo, e così in un quadrato o in un’altra
            figura.

            [image: link to parallel text] 29. Risolvere una data superficie delimitata da
            lati diritti in una porzione di cerchio[34].

            Da quanto premesso la soluzione è evidente se essa è un
            triangolo rettangolo. Se così non è, [la] si riduce in triangolo
            rettangolo.

            Risolvere le porzioni di cerchio comprese fra corda e arco[35] in [superfici] delimitate da linee dritte e in quelle
            delimitate da linee circolari, è evidente da sé.

            [image: link to parallel text] 30. Il rapporto tra la superficie curva di una
            sezione di sfera[36] e la [superficie della] base piana [di tale sezione], è
            come [quello tra] la linea dallo zenith al centro della base
            [della sezione], più il semidiametro della base [della sezione], e
            il suo semidiametro.

            Ciò è evidente, dal momento che è così nella sezione minima
            dove la superficie della base piana coincide con quella curva, e
            dove lo zenith coincide con il centro. Lo stesso accade in tutti
            gli altri casi.

            La superficie curva della metà di una sfera è il doppio della
            superficie piana del cerchio della base.

            Risolvere una superficie curva data di una sfera in una
            superficie piana circolare e con lati diritti.

            Risolvere una sfera in un cubo, e un cubo in una sfera[37].

            Allo stesso modo ricava i rapporti in tutte le altre superfici
            curve, facendo riferimento a quelli minimi. E tutto ciò che si può
            umanamente conoscere nelle matematiche[38] si trova, a mio avviso, con tale procedimento.

            Gloria a Dio[39].

          
        Note a piè pagina
[1] Il 30 settembre 1458, dopo aver definitivamente perduto la
              sua diocesi, Cusano incontra a Roma il cardinale spagnolo di S.
              Crisogono, Don Antonio Cerdá y Lloscos (cfr. Hofmann e Hofmann 1980, nota 2, 246), il quale gli sollecita di scrivere qualcosa di
              nuovo. Cusano scrive per lui La perfezione
              matematica, in cui, dopo i diversi tentativi
              precedentemente provati, rinuncia a trovare il rapporto esatto
              tra una grandezza rettilinea e una grandezza curvilinea e
              ricorre all’intuizione. Cusano considera quest’opera come il suo
              migliore trattato matematico e lo annota espressamente sotto il
              titolo del De mathematicis complementis,
              al margine di Cu, dove si legge che il
              De mathematica perfectione: «prevalet
              omnibus». In questo testo Cusano si serve della visio intellectualis, già ampiamente
              utilizzata nel De beryllo, come una vera
              e propria via demonstrandi: portando al
              limite minimo l’arco e la corda, la freccia risulta nulla e la
              curva coincide perfettamente con la retta, e ciò che è vero per
              il massimo e per il minimo è vero per tutti i valori intermedi
              (cfr. Cusanus 2010i, 7, 1–4). Tale uguaglianza (aequalitas), attuandosi nel minimo assoluto,
              non è esprimibile attraverso un numero razionale e, alla fine
              dello scritto, Cusano escogita una serie di operazioni
              realizzabili attraverso la coincidenza degli opposti e lascia
              credere al trionfo di tale metodo, rinunciando a determinare
              l’esatta quadratura del cerchio. Come annota Nicolle (1998, nota 21, 121), le ultime sei pagine di C
              sono state cancellate, senza dubbio con una pietra pomice. Nel
              Marzo 1968 il presidente della Cusanus–Gesellschaft di Trêves ha
              portato il documento al dipartimento del Ministero Tedesco della
              Criminalità. Attraverso metodi chimici è stato possibile
              ritrovare le tracce di inchiostro e ricostruire il testo. Si
              tratta di una prima versione cancellata del De
              mathematica perfectione. Ipotesi probabili sul perché siano
              state cancellate sono avanzate da Marco Böhlandt (2002, 104–109; cfr. anche Böhlandt 2005, 3–40). È molto probabile che Il De
              mathematica perfectione e il De
              beryllo siano state prodotti nel medesimo periodo e, poiché
              nel De beryllo si trovano argomenti
              generali sulla filosofia e sulla teologia simili a quelli
              esposti nella prima versione del De
              mathematica perfectione, è verosimile che Cusano non abbia
              voluto riportarli nella versione definitiva. Una squadra diretta
              da Rudolf Haubst ha proceduto alla decifrazione e Joseph
              Ehrefred Hofmann ha pubblicato il risultato di questo lavoro in
              Hofmann e Haubst 1973, 13–57. Nel 1983 Klaus Reinhardt ha ritrovato e ha trascritto
              un manoscritto integro nel codice To
              (Biblioteca Capitular, f. 188r–191r) molto simile a quello di Reinhardt 1986, 96–141. Sulla base di C e le
              integrazioni da parte di Reinhardt è stato ricostruito
              integralmente la forma prior del De mathematica perfectione ed è oggi
              disponibile in Cusanus 2010h, 183–199. Di questa forma prior abbiamo
              tradotto tre parti, riportati nell’ultima nota della presente
              traduzione: il primo estratto comprende i paragrafi 4–7; il
              secondo estratto i paragrafi 20–21; il terzo i paragrafi
              25–30.

            [2] Il termine latino è «aenigma». Cfr. Cusanus 1988b, 1, 2–10.

            [3] Qui Cusano parla di «quantitas curva et rectilinea», ossia
              una figura delimitata da linee dritte e una figura delimitate da
              linee curve.

            [4] Per «linee rectae» si intendono linee dritte, ossia non
              curve.

            [5] Cfr. Cusanus 1988b, 1, 2–5.

            [6] In questo passaggio, come in Cusanus 2010c, 17, dove si legge: «punctum, qui est terminus divisionis
              et lineae, et est rectilinealiter indivisibilis in quantum
              terminus lineae, in se tamen est quantitas divisibilis» e in
              Cusanus 2010g, 14: «Quantitas autem, quae non potest esse minor, non est
              quantitas, sed punctus», vi è una confusione di Cusano sul
              concetto di punto e di continuo. Cusano assimilare e non
              assimila la più piccola grandezza restante fra la corda e l’arco
              a un punto. Secondo Hofmann e Hofmann 1980, nota 4, 246, il valore di questa grandezza non è né indefinito, né
              un minimo, ma l’intervallo che noi chiamiamo infinitesimo e, su
              questa scia, Nicolle si chiede se Cusano possa essere
              considerato un precursore di Cavalieri (Nicolle 1998, nota 2, 120). Ora, sebbene la storia della matematica, da
              Euclide in poi, sia piena di considerazioni sugli
              infinitesimi, nessuno, matematicamente parlando, fino al
              Seicento, è andato oltre il metodo di esaustione. Così scrive
              Counet: «Finally both quantities [decreasing arc and chord]
              vanish according to rational mathematics, but intellectual
              intuition grasps something that is not zero (we would speak
              today of the rapport, which is not equal to zero even if the
              terms are)» (Counet 2005, 273–290, cit. 288).

            [7] Per «minimus simpliciter» s’intende il limite minimo
              infinito.

            [8] ac è la prima, ab
                 è la seconda, bc è la terza.
                L’approssimazione è: [image: \frac{\text{semiarco }hc}{\text{semicorda                 }bc}=\frac{3ac}{(2ac+ab)}]; bc
                corrisponde al «sinus», che altrove (Cusanus 2010i, 68, 6), e poco più avanti in questo scritto Cusano chiama
                «semicorda del doppio arco», secondo un’invenzione indiana
                trasmessa attraverso gli arabi all’Occidente medioevale (cfr.
                Taton 1957–1958, I, 161).

              [9] Poiché Cusano aveva affermato che la seconda bc dovesse essere il lato minore del
                triangolo, il triangolo rettangolo isoscele risulta il più
                grande possibile tra quelli ammessi. Cusano suppone
                l’esistenza di una grandezza t tale che
                [image: \frac{\text{arco                 }hc}{\text{corda }bc}=\frac{(ac+t)}{(ab + t)}].

              [10] Hofmann riporta una nota presente in Cu non presente nelle versioni stampate. Si
                ha: [image: \frac{(ab+2ac)}{(ac+4bc)}=\frac{\text{semicorda                 }bc}{\text{semiarco }hc}=\frac{(ab+t)}{(ac+t)}];
                anche [image: t=2ac=4bc] (cfr. Hofmann e Hofmann 1980, nota 10, 247).

              [11] Si ha: [image: \frac{(2ac+2bc)}{3ac}=\frac{\text{semicorda                 }bc}{\text{semiarco }hc}=\frac{(ab+t)}{(ac+t)}]; si
                suppone che [image: t=2ac=4bc]; così, [image: ab = 2bc] e [image: \text{l’angolo }bac=                 26^\circ34'].

              [12] La regola generale è la seguente: [image: \frac{\text{arco }ad}{\text{corda                 }bd}=\frac{(ac+ae+ad)}{(ac+ab+ad)}=\frac{\text{arco                 }gf}{\text{corda }gf}]. Se la corda [image: gf=ac+ab+ad], allora
                [image: \text{l’arco                 }gf=ac+ae+ad=\text{corda }gf+\text{freccia }be].

              [13] In Cu 219, la figura è orizzontale.
                Si ha: [image: [\frac{(4ac)}{(4ac–bh)}=\frac{(ac+3ac)}{(ab+3ac)}]<\frac{\text{semiarco                 }hc}{\text{semicorda                 }bc}<[\frac{(ac+ac)}{(ab+ac)}=\frac{2ac}{(2ac–bh)}]].
                Da cui: [image: (\frac{\text{semiarco }hc}{\text{semicorda                 }bc})=\frac{3ac}{(3ac–bh)}=\frac{(ac+2ac)}{(ab+2ac)}].

              [14] Per «aliquota» s’intende: contenuta un numero intero di
                volte, ossia un sottomultiplo intero. Scrive Bradwardine 1328, 68: «pars autem aliquota est illa quae, aliquotiens
                sumpta, reddit aequaliter summum suum. Pars vero non-aliquota
                est illa quae nullatenus, aliquotiens sumpta, reddit
                aequaliter summum suum» («Una parte aliquota è invero quella
                che, presa un determinato numero di volte, dà come risultato
                il suo tutto. Una parte non aliquota è quella che, presa un
                qualsiasi numero di volte, non dà come risultato il suo tutto»
                (in Clagett 1964–1984a, 493,trad. nostra).

              [15] Da [image: [\frac{28}{26}<\frac{11}{10}<\frac{14}{12}]]
                Cusano conclude che [image: \frac{11}{10}\approx\frac{21}{19}].
                Hofmann fa notare che il valore numerico approssimativo di
                [image: \frac{21}{19}=1,105] per [image: (\frac{\pi}{2\sqrt{2}})=1,111] è esatto
                nonostante l’approssimazione utilizzata insufficiente di
                [image: \sqrt{2}>\frac{7}{5}]; il valore
                numerico esatto in base alla regola di Cusano sarebbe [image: \frac{3}{(2+\frac{1}{\sqrt{2}})}=1,108]
                (Hofmann e Hofmann 1980, nota 14, 248).

              [16] Cfr. Cusanus 1972a, I, 4, 11.

              [17] Cfr. Cusanus 2010j, 2, 11–17; Cusanus 2010i, 3, 2–11.

              [18] In latino si legge «et», che è qui da intendersi nel senso
                di «o» alternativo.

              [19] La regola è la seguente: [image: \frac{\text{arco }bc}{\text{corda                 }bc}=\frac{3ab\text{ }(=gf)}{ab+ac+ad\text{                 }(=ef)}=\frac{3hc}{bc}]. Il secondo metodo non è
                sostanzialmente diverso dal primo.

              [20] Oggi siamo soliti costruire secondo lo svolgimento di Huygens 1656, prop. 13: se ABC è il triangolo dato e [image: ae=2ac], ec interseca nel punto x la tangente del punto h. Il semiarco [image: ch=\text{linea }hx]; quindi il [image: \frac{\text{semiarco                 }ch}{\text{semiarco                 }bc}=\frac{3ac}{2ac+ab}=\frac{he}{be}=\frac{hx}{bc}].
                Questo procedimento si utilizza tanto per rendere lineare un
                arco quanto per rendere curva una linea.

              [21] Cusano utilizza il termine generico di «sectores».

              [22] Cfr. Cusanus 2010k, 6, 1–3.

              [23] Se si definisce R il semidiametro, C la corda, F la freccia
                e A l’arco, si ottiene: [image: \frac{A}{C}=\frac{3R}{(3R–F)}]. Se ne
                ricava che [image: \frac{R}{R–F}=\frac{\frac{A}{3}}{(C–\frac{2}{3}A)}].

              [24] «similis» è inteso qui come uguale.

              [25] Il ragionamento sembra essere il seguente: conosci la parte
                della corda del quadrante che è uguale al terzo dell’arco
                ([image: \frac{1}{3}\text{di}\frac{1}{8}\text{d’arco}=\frac{1}{24}\text{d’arco}]),
                prendi la sua metà ([image: \frac{1}{2}\text{di}\frac{1}{3}\text{di}\frac{1}{4}\text{d’arco}=\frac{1}{24}\text{d’arco}]),
                aggiungi ad esso lo stesso ([image: 2\times\frac{1}{3}\text{di}\frac{1}{8}\text{d’arco}=\frac{1}{3}\text{di}\frac{1}{4}\text{d’arco}])
                e trovi l’eccesso che si rapporta al terzo ([image: \text{corda }–\text{                 }\frac{2}{3}\text{d’arco}]); questo è definibile come
                il quarto proporzionale.

              [26] Cfr. nota 23. Il punto di partenza è la regola: [image: \frac{A}{C}=\frac{3R}{(3R–F)}]. Si
                ricava che [image: \frac{R}{R–F}=\frac{(\frac{A}{3})}{(C–\frac{2}{3}A)}].
                Da ciò consegue che [image: 3R–F=3C] e dunque [image: A=C]. Ma, essendo
                [image: 3R–F=2C],
                allora [image: A: R=3:                 2].

              [27] La regola [image: \frac{A}{C}=\frac{3R}{(3R–F)}=\frac{\text{semicerchio}}{3R}]
                non vale sempre, ma soltanto per [image: \frac{1}{6}]. Si tratta apparentemente
                di una conseguenza errata, derivante dal fatto che Cusano non
                distingue tra le frecce che appartengono ad archi diversi.

              [28] Il triangolo equilatero di lato c e
                altezza h è tale che: [image: \frac{\text{circonferenza}}{\text{diametro}}=\frac{\frac{1}{6}\text{d’arco}}{\text{corda}}=\frac{3c}{(2c+h)}].
                Questa proposizione si comprende facilmente se si riporta la
                regola alla formula inversa [image: \frac{A-C}{A}=\frac{F}{3R}].

              [29] Cusano utilizza il termine «diameter» per indicare la
                diagonale in base a una etimologia inesatta da «δύο» e
                «µετρεĩν» (che divide in due)
                ripresa da Bradwardine 1495b, II, 1, concl. 8: «linea diagonali quae ducitur ab angulo ad angulum
                […]in quadrato vocatur diameter»). Una fonte chiara è la Practica geometriae (1220) di Leonardo
                Pisano (1862, II, 2). Nel 1498 si trova ancora il termine diametro per
                designare la diagonale del quadrato in Luca Pacioli: «Si ha costume di parlare di diametro anche per i
                quadrati: ecco (è) perché, al fine di evitare qualunque
                equivoco, si dice diametro del cerchio e diametro del quadrato
                per differenziarli» (Pacioli 1509, I, Cap. LXX). Cfr. Cusanus 2010i, 9, 3; Cusanus 2010g, 4.

              [30] L’affermazione segue dalla seguente formula: [image: \frac{(A–C)}{(\frac{C}{3})}=\frac{F}{R}=\frac{(\text{diagonale                 del quadrato}–\text{lato del quadrato})}{\text{diagonale del                 quadrato}}].

              [31] Generalmente et indica l’operazione
                di addizione. Questo rapporto deriva dalla regola sopra
                enunciata per un sesto di cerchio, con [image: c=7], per cui [image: h=\frac{7}{2}\sqrt{3}=\sqrt{36}\frac{3}{4}].

              [32] Si è qui tradotto «superficies recta» con «superficie
                delimitata da linee dritte» e non con «superficie piana».
                Quest’ultimo significato avrebbe senso se si volesse
                distinguere la «superficies recta» dalla «superficies curva»,
                come quella di una sfera; ma qui sembra che Cusano tenga conto
                di due e non di tre dimensioni, cioè ragioni nel piano,
                anziché nello spazio.

              [33] Come nei Cusanus 2010i, n. 90, 3, qui Cusano utilizza il termine «sectores» per
                indicare i raggi. Si tratta in pratica di un settore
                circolare.

              [34] Qui per «portio circularis» Cusano
                intende il settore circolare.

              [35] Qui per «abscissio» Cusano intende il segmento circolare.
                Quanto segue nel testo deriva da Archimedes 1910a, I, 30, 42–43 (Archimede 1974, 146–147).

              [36] Qui Cusano intende la calotta sferica.

              [37] Cfr. Cusanus 2010b, 44.

              [38] Cfr. Cusanus 1972b, II, 14, 144; Cusanus 1982, 27, 82, 13–15.

              [39] Rispetto alla versione ultima, la forma
                prior del De mathematica
                perfectione (Cusanus 2010h) presenta tre passaggi in cui emergono differenze
                interessanti rispetto alla versione definitiva. Riportiamo qui
                la traduzione dei tre estratti:

                Primo estratto (4–7): «Si deve
                considerare quindi in che modo, se applico la visione
                intellettuale a qualsiasi grandezza, per esempio a una linea,
                vedendola nella necessità d’essere, che non può essere né
                maggiore né minore, vedo quella grandezza come assoluta, […],
                ossia come misura adeguata di ogni grandezza, e, come in una
                grandezza, lo stesso vale per il triangolo, il cerchio e per
                tutte le altre figure; e come vedo che tutte le cose del
                genere della grandezza che sono nella necessità dell’essere
                della grandezza sono la grandezza assoluta stessa, così tutte
                le cose che sono assolutamente nella necessità dell’essere
                sono la necessità stessa. E da ciò considero di vedere la
                verità e la conoscenza delle cose là dove tutte le cose sono
                le stesse, cioè la necessità dell’essere. Dunque, se voglio
                trovare come si possa conoscere l’uguaglianza tra una
                grandezza rettilinea e una grandezza curvilinea è necessario
                che io sia guidato dalla visione intellettuale, la quale
                intuisce la loro uguaglianza nel cerchio massimo e nello
                stesso tempo nel cerchio minimo. Infatti, finché l’intelletto
                intuisce il cerchio nella necessità dell’essere, cioè così che
                non può essere né maggiore né minore, essendo il massimo e
                nello stesso tempo il minimo, esso vede il cerchio assoluto
                complicare ogni cerchio, e che la proporzione è vera in esso,
                dato che la corda e l’arco si identificano, e le linee, che
                sono limitate sulla corda, sono le stesse che sono limitate
                sull’arco, come sono note a chi le osserva. Dunque, da ciò che
                si vede qui, si ha che, nei cerchi sensibili, la vera
                conoscenza sta nella proporzione che sono le esplicazioni
                della complicazione del cerchio assoluto, come io ne ho
                trattato nei precedenti libri sulla dotta ignoranza. Come,
                infatti, nei [cerchi] sensibili, la corda e l’arco
                differiscono e variano, mentre sono lo stesso assoluto nel
                cerchio massimo assoluto, così in essi le linee limitate
                differiscono proporzionalmente. Da ciò, nello stesso modo,
                deriva la diversità della corda e dell’arco nei cerchi
                sensibili, poiché la semplicità del primo cerchio assoluto non
                può, come è comprensibile, essere sensibile, dato che la
                rettitudine della sua circonferenza, man mano che discende
                dalla sua perfezione, declina in curvatura; così la corda, che
                è sottesa all’arco, non può essere come l’arco. E poiché forse
                non sei molto abituato alle visioni intellettuali, e non sai
                cogliere la coincidenza del cerchio massimo con il cerchio
                minimo, [né cogliere] che la circonferenza è uguale alla linea
                retta, poiché né la ragione né l’immaginazione colgono ciò –
                infatti, essendo precedente alla grandezza divisibile,
                trascende tutte le capacità ‹conoscitive›, tranne quella
                intellettuale – ti guiderò affinché tu possa comprendere».

                Questa esposizione è interessante perché precisa la nozione
                di visio intellectualis, annunciata in
                modo molto laconico nella versione definitiva: «Sarà dunque
                necessario che io ricorra alla visione intellettuale, che vede
                coincidere la corda minima, ma non determinabile, con l’arco
                minimo» (3, 1–3). Nella prima versione Cusano puntualizza che
                la visione intellettuale deriva da una certezza logica: essa è
                una «necessità dell’essere» (necessitas
                essendi). Ancora, oltre che annullare la nozione di quantitas al fine di realizzare
                l’uguaglianza delle grandezze, la visione intellettuale porta
                a grandezze assolute, minimo e massimo, ossia a figure
                perfette non percepite attraverso i sensi; la visione
                intellettuale, inoltre, annulla la differenza fra più e meno
                nell’assoluto, dove il minimo e il massimo coincidono, essendo
                l'atto di tutte le possibilità.

                Secondo estratto (20–21): «Ora
                voglio trasformare una porzione di cerchio o un cerchio in un
                triangolo rettangolo. Considero in che modo nel cerchio
                massimo il triangolo rettangolo e la porzione o il cerchio
                coincidono, cioè sono uguali, dato che retta e arco sono
                uguali. Da ciò vedo che, se i due lati del triangolo
                rettangolo che formano l’angolo retto sono uguali al
                semidiametro e alla porzione dell’arco, le superfici saranno
                uguali in tutti i cerchi, proprio come nel ‹cerchio› massimo
                esse coincidono. E la coincidenza che si vede nel ‹cerchio›
                massimo si vede anche nel triangolo rettangolo minimo in
                qualsiasi cerchio. È dunque chiaro che il triangolo
                rettangolo, di cui un lato è ‹uguale› al semidiametro del
                cerchio e l’altro con cui il lato forma l’angolo retto è
                uguale alla circonferenza del cerchio, è uguale alla
                circonferenza più il cerchio. In questo modo determinerai in
                maniera proporzionale le porzioni ‹di cerchio›; si risolve
                ogni triangolo rettangolo in rettangolo o in quadrato o in
                altri poligoni grazie a ciò che è conosciuto in matematica. E
                così tu hai l’arte ‹di trasformare› una superficie delimitata
                da linee curve in una superficie delimitata da linee dritte,
                quadrangolare, triangolare o in un’altra figura».

                La versione definitiva (27, 1–9) appare molto meno
                empirica, più «teorica», e cancella tutti i riferimenti alla
                nozione di coincidenza.

                Terzo estratto (25–30): «Ho così
                voluto rivelare queste cose attraverso degli esempi, per dare
                occasione agli studiosi di meditare sul modo in cui si ottiene
                la conoscenza delle cose dalla visione intellettuale che si
                eleva al minimo e al massimo, affinché sappia che che ciò che
                vede in modo complicato quasi all’origine o al principio, è
                esplicato nelle figure sensibili e sul modo in cui nella
                coincidenza degli opposti si vede la complicazione delle cose
                conoscibili, come in questa matematica, dove si vede
                coincidere l’arco, la corda e la tangente nel triangolo
                rettangolo minimo. E così qui si complica il sapere delle cose
                conoscibili riguardo all’uguaglianza di ciò che è dritto e di
                ciò che è curvo[…] E, poiché questi esempi sono utilissimi a
                coloro che ricercano la verità, specie quando quelle questioni
                che, nonostante il massimo impegno, sono rimaste finora senza
                risposta, sono ora risolte in modo facile e certo, così, con
                questo esempio l’intelletto si aiuta e si volge allo scibile
                teologico, ossia alla coincidenza assoluta del minimo e del
                massimo o all’opposizione delle opposizioni, così come
                Dionigi il grande definisce dio come opposizione delle
                opposizioni, che non è altro che la coincidenza o
                l’uguaglianza. Infatti quell’uguaglianza innominabile è la
                forma dell’essere e del conoscere e la si vede attraverso la
                coincidenza degli opposti prima di ogni posizione e rimozione.
                A colui che contempla questa considerazione aiuterà moltissimo
                ricavare che la visione intellettuale è la vita
                dell’intelletto, che si nutre di verità; infatti, soltanto con
                tale visione è visibile, ed è spirituale colui che è abituato
                a quella visione, poiché, tra tutti coloro che si sforzano di
                parlare della verità, ‹è il solo che può› giudica‹re›, senza
                essere giudicato da nessuno; infatti soltanto chi apprende, sa
                riferire cose vere. Quella visione è dunque la luce della
                ragione, senza la quale ogni discorso è incerto e ogni
                movimento è ambiguo. La ragione, infatti, senza di essa, non
                sa fin dove si estende. Infatti soltanto la visione
                intellettuale è senza errore e senza inganno, e giudica la
                vera via, che conduce alla visione della verità, e se non è
                principio, mezzo e fine di ogni movimento della ragione, ogni
                lavoro è vano, così come colui che ricerca ciò che non conosce
                si affatica inutilmente. Da ciò, attraverso la fede, è
                iniziata la vera teologia di Cristo. La fede, infatti, è, per
                così dire, una sorta di visione, ma enigmatica; si conclude
                certamente con una visione, che si dice visione faccia a
                faccia senza enigma, ossia così com’è; e tuttavia non si vede
                nient’altro rispetto a ciò che si credeva. Dunque, la fede
                porta ciò che la visione coglie non all’incertezza, ma alla
                certezza, e ciò che coglie è la felicità, alla quale ogni
                natura intellettuale aspira attraverso l’attività
                intellettuale. Tuttavia la visione intellettuale è definita da
                Dionigi transizione in Dio. E, come colui che vede in
                questa frase di Euclide, ossia «il punto è ciò che non ha parti», in modo
                complicato, attraverso la visione intellettuale perfetta,
                tutto ciò che egli scrisse di geometria, e accede alla
                conoscenza di questi; così, colui che vede il verbo,
                attraverso cui egli agì, e il futuro, accede alla sapienza del
                padre creatore, poiché in quel verbo vede tutto ciò che è
                stato creato o può essere creato in modo complicato. Questa
                visione è la transizione alla sapienza, che è Dio. Lo stesso
                Dottore definisce quella visione anche nutrimento. Infatti
                l’intelletto si nutre nella visione dell’arte divina, che è il
                verbo. Ricava, infine, un esempio da come Dio creò il mondo,
                sebbene il modo divino sia senza modo. Come il matematico
                forma un concetto nuovo della quadratura del cerchio non a
                parteire dalla prima materia dell’essere, ma all’interno di se
                stesso, e poi lo rappresenta all’esterno, e, affinché possa
                rappresentarlo al meglio adatta gli strumenti e la tavola
                nella quale descriverà il concetto o il verbo nel modo in cui
                può cogliere la rappresentazione del suo verbo, e fa ciò per
                mostrare la gloria o la chiarezza del suo intelletto, la quale
                è tanto più lodata quanto più è compresa, allo stesso modo Dio
                ha creato tutto da sé stesso affinché sia manifesta la sua
                gloria, la quale è tanto più lodata quanto più la sua sapienza
                è colta o compresa. A Lui lode e gloria nei secoli dei secoli.
                Fine».

                Quest’ultimo passaggio non ha un equivalente nella versione
                definitiva. Cusano sembra qui formulare qualche idea della sua
                filosofia della matematica: le dimostrazioni matematiche
                sarebbero esemplari per la conoscenza di tutte le cose; la
                visione intellettuale in matematica permetterebbe di spiegare
                la complicazione e sarebbe dunque una via d’accesso all’essere
                delle cose.

              
  La proposizione aurea nelle matematiche del
              reverendo Padre Niccolò, cardinale di San Pietro
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Fig. 1
[image: link to parallel text] 1. Tre linee tracciate da un centro che formano
          angoli uguali, semirette o minori, hanno lo stesso rapporto con la
          linea che le delimita, sia essa un arco o una corda[1] (cfr. figura 1).

          Se da a, centro di bdc, sono tracciate linee di lunghezza
          indefinita, che formano intorno ad a due
          angoli uguali, semirette o minori, questi angoli sono delimitati o
          da un arco di un qualsiasi cerchio, per esempio bdc, o dalla sua corda bhc, o dalla tangente edg:
          le tre linee ab, ad e ac hanno con l’arco che le delimita lo stesso
          rapporto che le linee ab, ah e ac hanno con la corda bhc
          che le delimita o che le linee ae, ad e ag hanno con la tangente edg. E’ la stessa cosa se si dicesse: se l’arco
          bdc è un quadrante e le tre linee ab, ad e ac i suoi
          semidiametri, allora edg è uguale al
          quadrante e ae, ad e ag sono uguali ai tre semidiametri del suo
          cerchio[2].

          [image: link to parallel text] 2. Questo perchè se l’arco bdc dovesse essere esteso in una retta compresa
          tra le due linee che passano da a per b e da a per c, e le cui estremità sono equidistanti dal
          centro a, allora le estremità e il punto
          medio avrebbero necessariamente la stessa distanza dal centro a sia sulla retta sia sull’arco[3]. Se infatti le estremità avessero la stessa distanza
          [sulla retta e sull’arco], allora la distanza tra il punto medio e
          la retta dal centro a sarebbe minore della
          distanza tra il punto medio e l’arco e la retta sarebbe minore
          dell’arco come sulla corda bhc[4]. E se i punti medi avessero la stessa distanza [sulla
          retta e sull’arco], allora la distanza tra le estremità e le rette
          sarebbe maggiore [di quella tra le estremità e l’arco] come, per
          esempio, sulla tangente edg[5], e allora questa sarebbe maggiore dell’arco bdc. Bisogna quindi che il punto medio dell’arco,
          mentre questo si estende, si abbassi verso il centro e, allo stesso
          tempo, le estremità si alzino verso il centro come su ikl, dove il punto medio dell’arco in estensione
          si abbassa da d verso k e le estremità b e c si alzano verso i e l; l’innalzamento delle estremità è uguale
          all’abbassamento dei punti medi in modo che le estremità e il punto
          medio della retta abbiano la stessa distanza dal centro a di quella delle estremità e il punto medio
          dell’arco bdc[6]. Se non vi fosse questa equidistanza, allora la retta non
          sarebbe uguale a questo arco, ma all’arco corrispondente di un
          cerchio maggiore se la distanza dal centro fosse maggiore, o a uno
          minore se essa fosse minore[7].

          [image: link to parallel text] 3. E poiché più grande è il cerchio, più l’arco si
          avvicina alla retta, allora la mente vede che se si potesse
          tracciare un cerchio di grandezza infinita, allora sarebbe
          contemporaneamente arco e retta e la proposizione sarebbe vera[8]. E ancora, poiché l’angolo attorno al centro resta lo
          stesso, il rapporto tra ciò che delimita e ciò che è delimitato è lo
          stesso; ecco perché ciò che la mente vede come vero per il massimo,
          lo coglie anche in tutti gli altri casi[9]. La proposizione è, quindi, considerata la più vera in
          questi e altri innumerevoli casi.

          [image: link to parallel text] 4. La ragione per la quale la proposizione parla di
          due angoli semiretti che sommati formano un angolo retto o di due
          minori, e non di tutti gli angoli, è che, poiché dall’arco minimo e
          dalla minima porzione di cerchio fino al quadrante, il triangolo
          composto dai triangoli rettangoli e inscritto nella porzione di
          cerchio aumenta continuamente, esso [triangolo] diventa massimo nel
          quadrante e poi diminuisce[10]. Ecco perché la proposizione non può essere [parimenti]
          vera nel caso in cui l’arco, la porzione [di cerchio] e il triangolo
          aumentano [contemporaneamente] e nel caso in cui l’arco e la
          porzione [di cerchio] aumentano mentre il triangolo diminuisce.
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Fig. 2
[image: link to parallel text] 5. È evidente che qualsiasi arco può essere
          facilmente rettificato (cfr. figura 2). Infatti se tre
          segmenti di una retta sono una parte aliquota di tre semidiametri,
          allora questa retta sarà una parte aliquota dell’arco[11]; la superficie delimitata dalla linea curva è pertanto
          maggiore della superficie delimitata dalla retta. Se togli, quindi,
          un terzo dei tre segmenti della retta e tracci il semidiametro
          descrivendo un arco, questo sarà uguale alla retta e in generale
          puoi trasformare un arco in una retta e una retta in un arco e
          l’arco di un cerchio in arco di un altro cerchio[12].

          [image: link to parallel text] 6. È chiaro anche che si possono dare angoli che si
          rapportano tra loro come il lato e la diagonale di un quadrato e, in
          generale, si possono dare allo stesso modo linee, superfici e
          solidi. Hai anche moltissimi modi per rettificare il cerchio e
          trasformarlo in rettangolo e in quadrato. Questo vale per qualsiasi
          porzione di cerchio, che sia commensurabile o meno al cerchio[13]. Si scopre anche ciò che era sconosciuto sui seni e sulle
          corde. Tutto questo era finora sconosciuto nelle matematiche e tutto
          ciò che si saprà in questo campo, lo sarà grazie agli infiniti
          corollari non ancora trovati che derivano da questo.

          [image: link to parallel text] 7. Coloro che guardano più lontano vedono che
          l’uguaglianza del rapporto è il mezzo della trasformazione e del
          passaggio da contrario a contrario e che c’è qualcosa di divino nel
          fatto che tre linee tracciate da un punto siano delimitate o da un
          solo arco – e sono tutte uguali – o da una retta – e le estremità
          sono uguali e i punti medi variano fino all’incommensurabilità, come
          sono il lato e la diagonale di un quadrato. Il diverso modo in cui
          [le linee] sono delimitate rende diverse le superfici, così che una
          è delimitata da una curva, l’altra da una retta, mantenendo il
          rapporto delle linee di delimitazione uguale a quello delle linee
          che provengono da uno stesso punto in modo uguale. Questo non può
          essere vero né al di qua né al di là delle tre linee, considerate
          non come separate, ma come un’unica, semplice lunghezza[14]. Sarà compito della più alta speculazione occuparsi di
          questo principio unitrino e la derivazione delle cose da esso[15].

          Finito a Roma l’8 Agosto 1459 al tempo della legazione nella
          città ecc.

        Note a piè pagina
[1] Si tratta dell’ultimo trattato matematico conosciuto di
              Cusano, concluso a Roma l’8.8.1459, nel periodo in cui Cusano
              era incaricato dalla legazione romana. Esso contiene le stesse
              idee del De mathematica perfectione, ma
              introduce una formula matematica fondamentale. La denominazione
              “proposizione aurea” non rimanda in nessun modo al concetto di
              oro, ma a una proprietà preziosa e misteriosa della matematica,
              nella quale Cusano vede il simbolo della Trinità divina.

            [2] L’ipotesi è dunque che [image: \frac{(ab+ad+ac)}{\text{arco
              }bdc}=\frac{(ab+ah+ac)}{\text{corda
              }bhc}=\frac{(ae+ad+ag)}{\text{tangente }edg}]. Sulla
              figura, ad è il raggio del cerchio, dm è la semicirconferenza, cioè 2 archi bc e admo è il
              rettangolo avente la stessa area del cerchio.

            [3] Questo vuol dire che, nel corso della rettificazione di un
              arco, le estremità si allontanano dal centro mentre il suo
              centro vi si avvicina. La somma delle tre distanze resta,
              quindi, costante.

            [4] [image: ah<ad] il
              segmento [image: bhc<\text{arco
              }bdc].

            [5] [image: ae>ab], [image: ag>ac] e il segmento [image: adg>\text{arco
              }bdc].

            [6] [image: ai+ak+ah=ab+ad+ac].

            [7] Per estendere l’arco bdc,
              l’innalzamento delle estremità [image: bi] e [image: cl] deve essere compensato con
              l’abbassamento del centro dell’arco dk.

            [8] Allusione alla visio
              intellectualis.

            [9] Questa giustificazione del teorema con l’esempio del massimo
              non può essere ammesso in matematica, come anche l’esempio del
              minimo utilizzato nel De mathematica
              perfectione.

            [10] Questo vuol dire che il triangolo rettangolo (per esempio ACH) di cui l’angolo al centro del cerchio
              comincia a sorpassare i [image: 45^°], diminuisce in superficie.

            [11] Per esempio, se [image: (ab+ah+ac)=3ad], allora [image: ab+ah+ac] è una parte
              aliquota del cerchio.

            [12] [image: \frac{(ab+ah+ac)}{3}=\frac{a}{d}] e
              l’[image: \text{arco
              }bdc=\text{segmento }bc].

            [13] bac è un angolo retto, ad è un terzo della somma di ab, ah e ac ed è il
              raggio del cerchio di cui un quarto della circonferenza è uguale
              al segmento bhc. La somma dei quattro
              segmenti bc, cf, be e ef forma il perimetro del quadrato
              isoperimetrico al cerchio, cioè [image: bc+cf+be+ef=4] archi bdc; da ciò, tuttavia, non deriva che le
              superfici sono uguali, poiché la superficie del cerchio è
              maggiore di quella del quadrato. gk è e
              la media geometrica tra ad ed il doppio
              dell’arco dato bc, e anche il lato del
              quadrato la cui superficie è uguale a quella del cerchio, per
              cui il quadrato GIKL risulta uguale al cerchio, avente come
              raggio ad.

            [14] Nel rapporto delle tre linee in questione Cusano vede
              l’espressione del mistero della Trinità. Cfr. Cusanus 1972a, I, 19, 55, 37ss.; Cusanus 1972b, I, 35ss..

            [15] Cfr. Cusanus 1988b, 33, 1; 39, 1ss.; 60, 11–17.

            
  Appendice ‹Il maestro Paolo al cardinale
              Niccolò Cusano›

              
          [image: link to parallel text] 1. Le ampiezze[1] di tutti i poligoni isoperimetrici hanno tra loro e con il
          cerchio isoperimetrico lo stesso rapporto che esiste fra le prime
          linee[2] dell’uno e le prime linee dell’altro, e con il
          semidiametro isoperimetrico[3]. Ugualmente, gli eccessi delle ampiezze delle figure
          diverse dal triangolo rispetto all’ampiezza del triangolo hanno lo
          stesso rapporto di quello che gli eccessi delle prime linee di
          queste altre figure hanno rispetto alla prima linea del
          triangolo[4].

          [image: link to parallel text] 2. Per esempio: Sia ab la
          prima linea di un triangolo, sia cd la prima
          linea di un’altra figura intermedia, per esempio del quadrato, ce la prima linea del cerchio ossia il suo
          semidiametro, ac la semicirconferenza di
          tutte queste superfici, essendo esse isoperimetriche
          (cfr. figura 1). La superficie di ae[5] sarà l’ampiezza del cerchio, la superficie di ad sarà l’ampiezza di una figura intermedia come
          il quadrato, la superficie di af sarà
          l’ampiezza del triangolo. Dico per prima cosa che il rapporto tra la
          superficie di ae e la superficie di ad è uguale a quello tra la linea ce e la linea cd e che il
          rapporto fra la superficie di ad e la
          superficie di af è uguale a quello tra la
          linea cd e la linea cf, per la prima proposizione del libro VI di
          Euclide[6]. Le suddette figure hanno la stessa altezza e dunque sono
          proporzionali alle loro basi. Nello stesso modo si provano gli
          eccessi delle ampiezze, dato che il rapporto tra le superfici di ge e bd e le linee ed e df è lo stesso di
          quello tra le superfici di be e bd – che sono gli eccessi dell’ampiezza del
          cerchio e del quadrato sul triangolo – e le linee fe e fd – che sono gli
          eccessi delle prime linee del cerchio e del quadrato sulla prima
          linea del triangolo[7]. Queste cose sono chiare in base alla prima proposizione
          del libro VI di Euclide. Dunque, ciò che si è detto a proposito delle ampiezze
          dei corpi e degli eccessi delle loro ampiezze può essere detto delle
          prime linee e de loro eccessi.

          [image: ]
Fig. 1
[image: link to parallel text] 3. Se dalla seconda estremità della prima [linea]
          del cerchio alla seconda [linea] del triangolo si conduce una linea
          retta parallela alla base, il rapporto tra questa e l’eccesso della
          seconda sulla prima dello stesso triangolo che essa taglia è lo
          stesso di quello tra essa e l’eccesso delle seconde dalle prime di
          tutte le altre figure intermedie[8].

          [image: link to parallel text] 4. Sia tracciata su un’estremità della linea ac la perpendicolare ab, e
          sia questa la prima linea del cerchio, e sull’altra estremità di
          detta linea ac la perpendicolare cd, e sia questa la seconda linea del triangolo.
          Poiché la linea ab è minore della linea cd, se dal punto b si
          traccia la linea be parallela alla base ac, questa linea arriva alla linea cd, e divide l’eccesso della seconda sulla prima,
          che è hd, nello stesso rapporto che esiste
          tra de e eh. Dico che
          se si segnano la prima e la seconda di un’altra figura intermedia,
          per esempio con gi la prima e con gf la seconda, allora l’eccesso della seconda
          sulla prima, che è fi, è diviso nel punto k dalla linea be, nello
          stesso rapporto che esiste tra fk e ki, condotte dalle linee db e hb, così che il
          rapporto tra fk e ki
          sarà lo stesso di quella tra de e eh. Infatti, l’intero triangolo DHB è diviso
          dalla retta parallela alla base fi. Il
          rapporto tra eb e kh
          sarà dunque uguale a quello tra dh e fi, e il rapporto tra de e
          kf ed eh e ki, per la similitudine dei triangoli, sarà
          uguale al rapporto tra eb e kb. Dunque, de sta a fk come eh sta a ki, e permutando, de sta a
          eh come fk sta a ki[9]; dunque, questi eccessi sono divisi in maniera
          proporzionale, il che era ciò che bisognava dimostrare
          (cfr. figura 2).
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Fig. 2
[image: link to parallel text] 5. Si può anche dire che, se gf è la seconda di una sola delle figure
          intermedie, allora gi non sarà la prima[10]. La prima di queste figure sarà o maggiore o minore di gi. Sia presa inizialmente maggiore e sia essa
          lm. La prolungo verso l’alto fino a n, in modo che ln sia
          uguale a gf, e traccio la linea fn parallelamente alla base, per il fatto che le
          due linee gf e ln
          hanno la stessa lunghezza. Fra i due punti, g
          e l, si possono tracciare molteplici linee
          prime e seconde di figure intermedie. Se ne tracci una, e sia op la prima, e la si prolunghi fino alla seconda
          della stessa figura: essa cadrà o sulla linea fn, o al di sotto o al di sopra di essa. Ma non
          potrà cadere né sotto né sulla linea, poiché essa è la seconda di
          una figura di superficie minore; e dunque dovrebbe essere più lunga;
          e tuttavia, non può essere posta più lunga [di ln], poiché [image: gf[=ln]], è posta fra figure di superficie
          minore, e sarebbe più corta, il che è impossibile, dato che le linee
          seconde non vanno diminuendo nella direzione delle figure di
          superficie crescente, e ciò è impossibile. Sarebbe parimenti
          impossibile se si dicesse che la prima di queste figure è minore di
          gi. Non potendo essere né maggiore né minore,
          gi sarà essa stessa la prima, poiché tutti
          gli eccessi delle seconde sulle prime sono divisi nello stessa
          rapporto, il che è ciò che bisognava dimostrare.

          [image: link to parallel text] 6. Questa sembra la spiegazione della vostra
          undicesima conclusione, da cui dipende tutta la dimostrazione della
          quadratura[11]. Infatti, hq si rapporta a qi come hr si rapporta a
          rb. Inoltre, di queste quattro linee in
          proporzione[12], le prime tre sono conosciute, la prima hq è nota, poiché è la differenza tra la freccia
          del quadrato – o di un’altra figura intermedia – e la freccia del
          triangolo; qi, la seconda, è anch’essa nota,
          poiché è l’eccesso della prima del quadrilatero[13] sulla prima del triangolo. La terza hr è anch’essa conosciuta, poiché è la freccia
          del triangolo. Se dunque moltiplichi hr per
          qi, e dividi per hq,
          ottieni rb, che, aggiunto alla prima linea
          del triangolo, ra, darà ab, la prima del cerchio, cioè il suo
          semidiametro cercato. Ma non vedo perché le due linee hb e bd, entro cui sono
          compresi tutti gli eccessi delle prime e delle seconde, non possano
          essere curve di ogni genere di curvatura, nel qual caso la
          dimostrazione non porterebbe ad alcuna conclusione[14]. Accadrà infatti ciò che hai detto nella decima
          conclusione, cioè che le prime linee delle superfici più estese
          saranno sempre maggiori e le seconde sempre minori[15].

          [image: link to parallel text] 7. Penso che quanto detto sia sufficiente. Molti
          altri punti mi danno da pensare, per esempio che quelle coincidenze,
          o accrescimento e diminuzione delle forme, non debbano essere
          rappresentate mediante linee rette, come dicono i moderni; ma è una
          questione che riservo a un altro momento[16]. Ti saluto.

          [image: link to parallel text] 8. Sia data al nostro venerabile e fedele caro
          maestro, l'astronomo George Peurbach[17].

        Note a piè pagina
[1] Il termine «capacitas» è qui tradotto con ampiezza. Come
              negli altri scritti matematici, per rispettare al meglio lo
              spirito del linguaggio cusaniano, a differenza sia di J. E.
              Hofmann che traduce «capacitas» con «Fläche» (cfr. Hofmann e Hofmann 1980, 128) sia di J.-M. Nicolle che traduce il termine latino
              con «Surface» (cfr. Nicolle 1998, 49), si è preferito qui differenziare i due termini (capacitas e superficies), utilizzati entrambi da Cusano,
              rendendo il latino capacitas a volte con
              ampiezza, altre volte, a seconda del contesto, con estensione o
              superficie.

            [2] La prima linea designa il semidiametro del cerchio inscritto
              al poligono in questione; la seconda linea designa il
              semidiametro del cerchio circoscritto al poligono.

            [3] Sebbene sulla data di composizione di questa lettera non si
              abbiano notizione certe e documentate, è molto probabile che
              essa sia stata scritta nell’inverno, tra il 1453 e il 1454. I
              primi editori hanno creduto che si trattasse di un testo di
              Cusano, ma in realtà si tratta di una critica di
              Toscanelli alla proposizione fondamentale de I
              complementi matematici, ossia la proposizione 12, come
              emerge da due note a margine di Cu
              scritte dallo stesso Cusano. Essa deve essere letta fra il libro
              I e il libro II de I complementi
              matematici. Dall’ultima frase del testo si evince che il
              testo doveva essere dato a Peurbach, e da questi a Regiomontano. Nel 1533 fu pubblicato in n
              da Johannes Schöner.

            [4] Dalla relazione [image: f_n=\frac{u}{2}\rho_n] (cfr. Cusanus 2010i, 1) si deduce la proporzionalità tra [image: f_n] e [image: \rho_n], e in particolare
              tra [image: f–f_n] e
              [image: r–\rho_n]. Se si
              chiama n il numero dei lati del poligono,
              f la sua superficie, [image: \rho] il semidiametro del
              suo cerchio inscritto (la linea «prima»), r il semidiametro del suo cerchio
              circoscritto (la linea «seconda»), allora:

              [image: \frac{f_3}{f_4}=\frac{f_n}{f}=\frac{\rho_3}{\rho_4}=\frac{\rho_n}{\rho}].
              Da ciò si evince: [image: \frac{(f_{n–1}–f_n)}{(f_n–f)}=\frac{\rho_{n–1}}{\rho_n-\rho}].

            [5] Per tradizione si designano le superfici rettangolari
              attraverso la loro diagonale. Così, nella figura, ad designa la superficie del rettangolo AGDC.

            [6] Cfr. Euclide 2007, VI, 1: «I triangoli e i parallelogrammi che sono sotto la
              stessa altezza sono l’uno proporzionale all’altro come le loro
              basi».

            [7] Toscanelli pone 4 proporzioni:

              [image: \frac{\text{superficie
              } ae}{\text{superficie } ad}=\frac{\text{linea } ce}{\text{linea
              } cd}];

              [image: \frac{\text{superficie
              } ad}{\text{superficie } af}=\frac{\text{linea } cd}{\text{linea
              } cf}];

              [image: \frac{\text{superficie
              } ge}{\text{superficie } bd}=\frac{\text{linea } ed}{\text{linea
              } df}]; [image: \frac{\text{superficie } be}{\text{superficie }
              bd}=\frac{\text{linea } fe}{\text{linea } fd}].

            [8] [image: \frac{(r_3–\rho_3)}{(r_n-r_3)}=\frac{(r_n–\rho_n)}{(r_n-r_3)}]
              .

            [9] Si tratta di dimostrare che: [image: \frac{fk}{ki}=\frac{de}{eh}]. Posto
              [image: \frac{eb}{kb}=\frac{dh}{fi}] e [image: \frac{de}{kf}=\frac{eh}{ki}=\frac{eb}{kb}],
              si ha: [image: \frac{de}{kf}=\frac{eh}{ki}]; permutando,
              si ottiene [image: \frac{de}{eh}=\frac{fk}{ki}].

            [10] Toscanelli inizia qui una dimostrazione indiretta per mostrare
              che gi è necessariamente la linea
              «prima», sempre continuando a presupporre la proporzionalità
              sostenuta da Cusano e rifacendosi a I
              complementi matematici. Cfr. Cusanus 2010i, 11.

            [11] Cfr. Cusanus 2010i, 22.

            [12] Considerando i due triangoli rettangoli BHR e IHQ, si ha:
              [image: \frac{hr}{hq}=\frac{rb}{qi}], da cui si
              deduce [image: rb=\frac{(hr\text{
              }\times\text{ }qi)}{hq}].

            [13] Del quadrilatero, se si prende come esempio di figura
              intermedia un quadrato.

            [14] Toscanelli avanza qui la sua obiezione: le linee db e hb sono
              effettivamente linee rette? o meglio, saranno esse curve
              incurvate l’una verso l’altra? La proposizione sostenuta da
              Cusano è la stessa qualunque sia n, il
              numero dei lati del poligono isoperimetrico? Come mostra Hofmann e Hofmann 1980, nota 5, 234, se ad esempio poniamo il raggio isoperimetrico uguale
              a r, si ha [image: gi=\rho_n=r\times\frac{\phi}{tg\phi}];
              [image: gf=r_n=r\times\frac{\phi}{\sin\phi}];
              [image: \phi=\frac{\pi}{n}]. Attribuendo al punto
              g un’ascissa proporzionale a [image: f_n=\frac{u}{2}\rho_n=r^2\pi\times\frac{\phi}{tg\phi}];
              è chiaro che hb è rappresentata da una
              retta, cosa che non accade con db.
              Ponendo ad esempio [image: \rho_n=\lambda x]; [image: r_n=y] (dove per [image: \lambda] si intende un
              fattore di proporzionalità positivo costante) si ha [image: \frac{dy}{dx}=–\frac{1}{\lambda}\times\frac{(\sin\phi–\phi\cos\phi)}{(\phi–\cos\phi\sin\phi)}<0].
              Qui [image: \phi=\frac{\pi}{3}] corrisponde al valore
              iniziale [image: \rho_3],
              e [image: \phi=0]
              corrisponde al valore finale r. Il
              rapporto [image: \frac{(\sin\phi–\phi\cos\phi)}{(\phi–\cos\phi\sin\phi)}]
              oscilla nel campo [image: \frac{\pi}{3}\geq\phi\geq0] tra i valori
              0, 558 e 0,500. Se ora determiniamo [image: \frac{dx}{d\phi}\times\frac{d^2y}{d\phi^2}–\frac{dy}{d\phi}\times\frac{d^2x}{d\phi^2}=(\frac{r}{\lambda^2
              \sin
              \phi})(\phi\frac{dx}{d\phi}+2\sin\frac{dx}{d\phi})] ci
              accorgiamo che la curva tra b e d è senza punti di flessione e devia dalla
              corda db soltanto un po’ verso il basso.
              Il riferimento all’obiezione riportato nella nota a margine dei
              Complementi matematici scosse Cusano al
              punto che rinunciò alla proposizione e decise di scrivere il
              secondo libro.

            [15] Cfr. Cusanus 2010i, 21.

            [16] La teoria delle intensiones et remissiones
              formarum è ripresa da Oresme 1968. Cfr. Hofmann e Hofmann 1980, nota 6, 234.

            [17] Da quest’ultima frase sembra che Toscanelli abbia fatto appello all’autorità di Peurbach per esaminare la questione.
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